OHIO TURNPIKE AND INFRASTRUCTURE COMMISSION

ADDENDUM NO. 1

PROJECT NO. 39-15-02

PROJECT NO. 39-15-02 (PART A) **RIGHT TWO (2) LANES AND SHOULDER RECONSTRUCTION** MILEPOST 216.10 TO MILEPOST 218.60 **RECONSTRUCTION OF TWO (2) LANES AND SHOULDERS** MILEPOST 218.60 TO MILEPOST 221.26 **TRUMBULL AND MAHONING COUNTIES, OHIO**

PROJECT NO. 39-15-02 (PART B) **BRIDGE DECK OVERLAY TP 216 RAMP BRIDGE OVER THE OHIO TURNPIKE** MILEPOST 216.4 **TRUMBULL COUNTY, OHIO**

OPENING DATE: 2:00 P.M. (E.S.T), JANUARY 28, 2015

ALL BIDS MUST BE ELECTRONICALLY SUBMITTED

ATTENTION OF BIDDERS IS DIRECTED TO:

MODIFICATIONS TO THE CONTRACT DOCUMENTS

Project No. 39-15-02A, Sheets 4, 19, 20, 22, 207, 209, 217, 218, 219 and 245 of 419 Plan Insert 2 – Sheet 2 of 2

ANSWERS TO QUESTIONS RECEIVED THROUGH 5:00 PM JANUARY 15, 2015

Issued by the Ohio Turnpike and Infrastructure Commission on January 16, 2015. Issuance authorized by Tony Yacobucci, Chief Engineer, and Tommie Jo Marsilio, Director, Contracts Administration and Compliance.

and S 1/16/15 Date

nmie Jo Marsilio

OHIO TURNPIKE AND INFRASTRUCTURE COMMISSION ADDENDUM NO. 1 PROJECT NO. 39-15-02

MODIFICATIONS VIA ADDENDUM NO. 1 TO THE CONTRACT DOCUMENTS FOR PROJECT NO. 39-15-02

Modifications to the Plan Drawings

Additions and deletions on Plan Drawings are indicated with a cloud and revision triangle thus:

The following plan sheet(s) has been updated and the new plan sheet should be substituted for:

Project No. 39-15-02A, Sheets 4, 19, 20, 22, 207, 209, 217, 218, 219 and 245 of 419 Plan Insert 2 – Sheet 2 of 2

Modifications to the Bid Express Bid Form and Excel Worksheet

A new Excel worksheet is provided with this Addendum.

Please note Bids may not be submitted using the Excel Worksheet.

ANSWERS TO QUESTIONS RECEIVED THROUGH 5:00 PM JANUARY 15, 2015

- Q#1 Is there a soil report or pavement coring report that was done on this project? If so please make it available.
- A#1 Yes, The Subgrade/Base Improvement Report dated January 2015 is attached to this Addendum No. 1.

Q#2 Will the contractor be permitted to use the service drives at MP 119.4 (sic) to access the dump site provided by the OTC?

A#2 Milepost 119.4 is not included in this project. Presuming this is a typographical error, however, the Contractor will be able to utilize the service drives at MP 219.4 during certain Maintenance of Traffic (MOT) Phases as listed below. The Contractor will be restricted to legal loads when traveling over the OTIC Bridges. All access roads shall be returned to the OTIC at the end of the Project in the same condition as prior to the commencement of Construction.

During MOT Phase 1A, 1B, 1C, 1D, 1E and 1F, the Contractor shall be able to utilize the Westbound and Eastbound access drives at MP 219.4 to access the dump site.

During MOT Phases 3 and 3A, the Contractor shall be able to utilize only the Eastbound access drive at MP 219.4 to access the dump site. The Contractor will not be able to utilize the Westbound access drive at MP 219.4 during MOT Phases 3 and 3A.

During MOT Phase 3, the Contractor shall be able to utilize only the Westbound access drive at MP 219.4 to access the dump site. The Contractor will not be able to utilize the Eastbound access drive at MP 219.4 during MOT Phase 3.

Q#3 Is full depth pavement sawing considered incidental to pavement removed? Previous projects had a pay item set up for this activity.

- A#3 Via Addendum No. 1, a contingency quantity for Item 252 Full Depth Pavement Sawing has been added to the plans to address Condition No. 1 as shown on Sheet 15 of 419. The general note for Item 252 Full Depth Pavement Sawing on Sheet 22 of 419 has been revised to include this contingency quantity.
- Q#4 DR-33 on pg. 245 calls for a Manhole #3, please provide invert and grate elevations for this structure since it is not shown on the plans.
- A#4 Via Addendum No. 1, the proposed invert and grate elevation information for this Manhole No. 3 has been added to Sheet 245 of 419.
- Q#5 The "Step Detail" as shown on the outside edges of the pavement will require additional excavation and embankment in order to build correctly. Previous projects included an additional quantity to perform this work. Is this work considered incidental to excavation? Will the OTC consider adding quantity to pay for this?
- A#5 Via Addendum No. 1, plan note 6 and a typical detail have been added to Sheet 4 of 419 which specifies that the additional excavation and embankment necessary for the placement of the aggregate base and asphalt aggregate base edge extensions shall be incidental to the cost of placing these materials.

Q#6 Are there approximate locations for the shallow bedrock that may be encountered as indicated on pg. 20? What kind of bedrock is this material?

A#6 As detailed in the Subgrade/Base Improvement Report dated January 2015, shallow bedrock was encountered in the area of borings B 44-11(MP 218.10) through B 44-13 (MP 218.46), B 44-26 (MP 220.74) and B-44-27 (220.89). Based on the depth of bedrock encountered in the borings and subsequent offset borings performed in the area of borings B-44-11 and B-44-12, the need for bedrock undercuts within these zones is not anticipated. However, given the spacing of the borings near the end of the project limits, there is a potential for encountering areas where weathered bedrock may be encountered during construction. The bedrock was classified as shale.

Via Addendum No. 1, a general note "Item 203 – Rock Excavation for Underdrain Installation, As Per Plan" with contingency quantity on Sheet 19 of 419 was added.

Q#7 Plan note #5 on sheet 20 for Shallow Bedrock Stabilization indicates that the embankment material is to stabilized Per ODOT item 206 with 4% Portland cement @ 10" thick. How is the contractor compensated to do this work?

- A#7 In the event bedrock is encountered and the depth of stabilization is reduced, the Contractor will be compensated for the Item 206 Cement Stabilized Subgrade, 12 inches Deep, As Per Plan. There will be no reduction in payment due to the depth reduction. The Cement will be paid for the actual tons of material used.
- Q#8 Please provide quantity calculations for both the lime and cement stabilized subgrade items.
- A#8 Via Addendum No. 1, the limits of stabilization and the quantities have been modified in the general note "Item 206 Chemically Stabilized Subgrade, As Per Plan" on Sheets 19 and 20 of 419. The following table provides the quantity calculation requested:

BEGIN STATION	END STATION	LENGTH (FEET)	CHEMICAL & APPLICATION RATE	DEPTH (IN.)	TREATMENT AREA (SF)	QUICKLIME STABILIZATION AREA (SY)	CEMENT STABILIZATION AREA (SY)	IN-SITU DRY UNIT WEIGHT (PCF)	APPLICATION RATE (LBS/SY)	QUICKLIME (TON)	PORTLAND CEMENT (TON)
528+85	47+00	8233	5% QUICKLIME	14	579,420	64,380	-	110	57.8	1,870	-
47+00	93+60	4660	4% PORTLAND CEMENT	12	393,729	-	43,750	115	41.4	-	910
93+60	204+80	11120	5% QUICKLIME	14	1,001,832	111,320	-	110	57.8	3,220	-
204+80	237+19	3239	4% PORTLAND CEMENT	12	291,510	-	32,390	115	41.4	-	680

Addendum No. 1 to Contract 39-15-02 is hereby acknowledged:

(Firm Name)

(Signature)

(Printed Name)

Date: _____

GEOTECHNICAL SERVICES FOR THE PAVEMENT REPLACEMENT PROGRAM MP 216.1 TO MP 221.26 OTIC DESIGN CONTRACT NO. 71-14-08 OTIC CONSTRUCTION CONTRACT NO.39-15-02 TRUMBULL AND MAHONING COUNTY, OHIO

SUBGRADE / BASE IMPROVEMENT REPORT

Prepared For: The Ohio Turnpike and Infrastructure Commission 682 Prospect Street Berea, Ohio 44017-2799

> Prepared By: Resource International, Inc. 9885 Rockside Road, Suite 145 Cleveland, Ohio 44125

> > Rii Project No. N-14-020(2)

January, 2015

January 12, 2015

Mr. Dennis Albrecht, Jr., P.E. Assistant Chief Engineer The Ohio Turnpike and Infrastructure Commission 682 Prospect Street Berea, Ohio 44017-2799

Re: Subgrade / Base Improvement Report Geotechnical Services for the Pavement Replacement Program MP 216.1 to MP 221.26 OTIC Design Contract No. 71-14-08 OTIC Construction Contract No. 39-15-02 Trumbull and Mahoning County, Ohio Rii Project No. N-14-020(2)

Mr. Albrecht:

Resource International, Inc. (Rii) is pleased to submit this subgrade / base improvement report for the above-referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of the proposed pavement reconstruction as part of the Geotechnical Services for the Pavement Replacement Program from Mile Post 216.1 to Mile Post 221.26 in Trumbull and Mahoning County, Ohio.

This report consists of three parts: Part 1: Subgrade Exploration Report; Part II: Cement Stabilization Mix Design Report; and, Part III: Cement Stabilization Specifications and Constructability Report.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the subgrade exploration or this report, do not hesitate to contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

vian Urenner

Brian R. Trenner, P.E. Project Manager – Geotechnical Services

Julla A. Miller, P.E. Project Manager

Enclosure:

Subgrade / Base Improvement Report

Dane P. Redinger, P.E. Director – Construction Services

9885 Rockside Road Suite 145 Cleveland, Ohio 44125 Phone: 216.573.0955 Fax: 216.573.0963 Planning

Engineering

Construction Management

Technology

Palm Beach, Florida

Sect	ion		Page
EXE	CUTIN	VE SUMMARY	I
	Part Part	I: Subgrade Exploration Exploration and Findings Analysis and Recommendations II: Portland Cement and Quicklime Stabilization Mix Design	i <i>i</i> ii iv
PAR	T I: S	UBGRADE EXPLORATION REPORT	1
1.0	INTR	RODUCTION	2
2.0	GEO	DLOGY AND OBSERVATIONS OF THE PROJECT	2
	2.1 2.2	Site Geology Existing Conditions	2 3
3.0	EXPI	LORATION	4
4.0	FIND	DINGS	7
	4.1 4.2 4.3 4.4 4.5	Surficial Material Subsurface Soils Bedrock Groundwater DCP Test Results	7 8 9 9 9
5.0	ANA	LYSES AND RECOMMENDATIONS	
	5.1 5.2 5.3	Pavement Subgrade Recommendations5.1.1 DCP Subgrade Analysis5.1.2 ODOT GB1 Analysis5.1.3 Subgrade CBR Considerations5.1.4 Global StabilizationRemediation / Reuse of Existing PavementConstruction Considerations5.2.1 Groundwater Considerations	
PAR	ти:	PORTI AND CEMENT AND QUICKI IME STABILIZATION MIX	DESIGN
REP	ORT.		
1.0	ΜΙΧΙ	DESIGN SAMPLING AND TESTING	
	1.1 1.2	Untreated Soil Laboratory Testing Mix Design Laboratory Testing 1.2.1 Quicklime Mix Design Laboratory Testing 1.2.2 Portland Cement Mix Design Laboratory Testing	

TABLE OF CONTENTS

PAR	T III:	QUICKLIME AND PORTLAND CEMENT STABILIZATION S	SPECIFICATIONS
AND	CON	ISTRUCTABILITY	27
1.0	GEN	IERAL	
	1.1	Materials	
	1.2	Special Equipment	
2.0	CON	ISTRUCTION REQUIREMENTS	
	2.1	Chemical Selection and Proportioning	
	2.2	Preparation of Subgrade	
	2.3	Material Spreading	
	2.4	Water Addition	
	2.5	Compaction	
	2.6	Finishing and Curing	
	2.7	Quality Control / Quality Acceptance	
3.0	CON	ISTRUCTABILITY AND ACCESSIBILIITY REVIEW	31
LIMI	ΤΑΤΙ	ONS OF STUDY	

PART I: APPENDICES

- Appendix I-A State Geology
- Appendix I-B Vicinity Map and Boring Plan
- Appendix I-C Description of Soil Terms
- Appendix I-D Boring Logs: B-44-01 through B-44-27
- Appendix I-E Subgrade Stabilization and ADCP Summary
- Appendix I-F Graphical Output of Historic and Current CBR Values

PART II: APPENDICES

- Appendix II-A Unconfined Compressive Strength Reports
- Appendix II-B Sulfate Content Test Results
- Appendix II-C Bulk Soil Sample Classification Matrices
- Appendix II-D Application Rate Charts
- Appendix II-E ODOT Typical Moisture-Density Curves

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a subgrade / base improvement report for the design and construction of the proposed pavement reconstruction as part of the Geotechnical Services for the Pavement Replacement Program in Lorain County, Ohio. The project length is approximately 5.3 miles and encompasses both the eastbound and westbound lanes of the Ohio Turnpike (I-80/I-76) between Mile Post 216.1 and Mile Post 221.26.

Part I: Subgrade Exploration

Exploration and Findings

- Between August 13 and September 4, 2014, a total of twenty-seven (27) test borings were completed within the existing alignment of the Ohio Turnpike (I-80/I-76) at the locations illustrated on the boring plan in Appendix I-B of the full report. The borings were drilled to completion depths ranging from 2.1 to 9.1 feet below the existing ground surface. Pavement cores of 16 inches in diameter were also obtained at each location to allow for adequate bulk samples to be collected for chemical subgrade stabilization design.
- Borings B-44-10 through B-44-13 encountered 16.0 to 17.0 inches of asphalt overlying 7.0 and 5.0 inches of slag base in borings B-44-10 and B-44-12, respectively, at the ground surface and 3.0 inches of aggregate base in boring B-44-13. The remaining borings encountered 2.0 to 7.5 inches of asphalt overlying 5.5 to 16.0 inches of concrete followed by 3.0 to 16.0 inches of slag base at the ground surface, with the exception of boring B-44-09, which encountered 3.0 inches of No. 2 stone beneath the concrete. The origin and composition of the slag base material was further investigated by Rii, and the results are presented in a separate report.
- Underlying the existing pavement materials, natural soils or existing embankment fill were encountered consisting primarily of cohesive soils with intermittent seams of granular material. The cohesive soils were generally described as brownish gray, brown, gray, dark gray and black sandy silt, silt, silt and clay, silty clay and clay (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6). The granular soils were described as brownish gray, light brown and brown gravel, gravel and sand and gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-6), and were typically encountered where shallow bedrock was present. The gravel encountered in boring B-44-13 consisted of pea gravel overlying a geotextile fabric separator between the pea gravel and shale bedrock.
- Bedrock was encountered in borings B-44-11, B-44-12, B-44-13, B-44-26 and B-44-27 at depths ranging from 1.3 to 3.4 feet below the existing ground surface, as determined by split spoon sampler refusal. The bedrock encountered consists of gray, highly weathered shale. Additionally, auger refusal was encountered in borings

B-44-11, B-44-12, B-44-13 and B-44-26 at depths ranging from 3.1 to 4.7 feet below the ground surface. On December 4 and 8, 2014, six (6) offset borings, designated as B-44-10A through B-44-11C, were performed in the vicinity of boring B-44-11, where bedrock was the shallowest, to delineate the depth to bedrock. Based on the conditions encountered in the offset borings, bedrock was not encountered in borings B-44-10A and B-44-10B, and bedrock was encountered in borings B-44-10C through B-44-11C at depths ranging from 3.5 to 4.5 feet below the pavement surface.

 In addition to the traditional soil borings conducted for the current investigation, dynamic cone penetrometer (DCP) tests were also conducted at each location to determine the in-situ subgrade condition. The DCP tests were conducted to depths ranging from 3.35 to 32.83 inches below the existing pavement sections along the project limits. All depth measurements for the DCP are referenced to the top of the subgrade (bottom of slag or aggregate base).

Analysis and Recommendations

- The soil data compiled indicates that the subgrade soil for the proposed pavement along the alignment will consist primarily of medium stiff to hard silt and clay and silty clay (ODOT A-6a, A-6b) with isolated areas of stiff to very stiff sandy silt and clay (ODOT A-4a, A-7-6) and loose to dense gravel and gravel and sand (ODOT A-1-a, A-1-b).
- The ADCP output is a penetration rate (PR) measured in millimeters per blow (mm/blow). The PR observed from the ADCP tests ranged from 4.6 to 40.2 mm/blow, with an average PR for all tests performed of 18.3 mm/blow. These values can be correlated to California bearing ratio (CBR) values for use in the evaluation of the subgrade soils using equations developed by the Army Corps of Engineers. The correlated CBR from the ADCP ranges from 2 to 12 with an average CBR value of 10. It should be noted that the CBR obtained from ADCP testing represents the in-situ subsurface conditions at the time of the testing.
- Based on the ODOT Geotechnical Bulletin GB1: Plan Subgrades, the average site parameters from the current investigation are noted in the following table.

Average N∟	Average Pl	Average Moisture	Average Optimum Moisture	Average Group Index	Average CBR
15	16	16	15	9.0	6

 A review of the historic data presented in the 2009 investigation was also conducted to verify the current findings and to supplement the current data for the evaluation of the subgrade strength. The overall average CBR of the historic data, consisting of the 1995 correlated CBR values from soil samples and the 2009 DCP and FWD testing, along the project alignment was 8.

- Based on the premise that engineered fill material, where required, will be consistent
 with the soils encountered in the test borings, Rii recommends that a CBR of 7 be
 used in pavement design based on the current and historic subgrade strength
 data analyzed and reviewed. A graphical output of the CBR values from all of the
 historic and current testing along the project length is provided in Appendix I-F of the
 full report.
- Rii presents two global stabilization options, with Option 1 being the recommended alternative, based on an evaluation of the subgrade using the ODOT GB1 analysis in conjunction with the DCP data collected at each boring location; these options should be evaluated based upon a cost and constructability analysis:

Option 1. (Recommended) The subgrade should be chemically stabilized with 12 inches of cement or 14 inches of quicklime, as outlined in the following table and per ODOT Supplement 1120. The recommended application rate for the estimation of the quicklime and cement content required for stabilization is presented in Part II of the full report.

Begin Station ¹	End Station ¹	Length (feet)	Chemical Type	Stabilization Depth (inches)
528+85 ²	47+00 ²	8,233	Quicklime	14
47+00	93+60	4,660	Cement	12
93+60	204+80	11,120	Quicklime	14
204+80	237+19	3,239	Cement	12

1. Begin and End project limits determined from plan information provided by the OTIC and CT Consultants.

2. Sta. 564+18 back = Sta. 0+00 ahead at Trumbull and Mahoning County line.

- Option 2. The subgrade should be stone stabilized via a 1.0-foot undercut and replacement with Type B, C or D ODOT Item 703.16C granular material installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in Section 5.3 of Part I of this report.
- Shallow bedrock was encountered in the area of borings B-44-11 through B-44-13, B-44-26 and B-44-27. Based on the depth of bedrock encountered in the borings and subsequent offset borings performed in the area of borings B-44-11 and B-44-12, Rii does not anticipate the need for bedrock undercuts within these zones. Please note that given the spacing of the borings near the end of the project limits, there is a potential for encountering areas where the bedrock surface may be encountered during construction. Should bedrock be encountered during construction, the bedrock should be undercut to 1.0 foot below the proposed bottom of pavement section to remove bedrock per ODOT Item 204.05 and replaced with ODOT Item 203 embankment. Following placement of the embankment, the area of undercut should be stabilized to a depth of 10.0 inches using the proposed stabilization chemical noted in the table above for the respective area.

Part II: Portland Cement and Quicklime Stabilization Mix Design

- Between August 14 and September 4, 2014, Rii obtained twenty-four (24) bulk soil samples over the entire length of the project (MP 216.1 to MP 221.25). Bulk samples were not obtained at Borings B-44-11, B-44-13, and B-44-26 where shallow bedrock was encountered.
- Based on the soil types encountered, it is recommended that guicklime or Type I Portland cement be utilized as the soil subgrade stabilization chemical within the station limits outlined in Table 6 of Section 5.1.4 in Part I of this report. The following table shows the samples that were selected for mix design testing.

Sample ID	Station	Soil Type	Sulfate Content (ppm)	Organic Content (%)	Moisture Content (%)	Plasticity Index	ODOT Curve ID	Complete Mix Design Testing Sample ID	
B-44-09	51+62	A-1-b	3,146	2.8	20	NP	I	CT-1	
B-44-16	121+84	A-4a	1,660	5.5	9	14	I	CT-2	
B-44-07	33+04	A-6a	520	3.8	15	20	I	ст а	
B-44-27	217+83	A-6a	800	4.4	14	17	L	01-3	
B-44-01	541+48	A-6b	687	5.6	17	27	R	CT-4	
B-44-05	14+46	A-7-6	3,680	4.0	18	27	S	CT-5	
B-44-22	172+37	A-7-6	1,493	4.9	18	23	Р	CT-6	
B-44-10	60+89	A-6b	1,153	1.7	12	18	Ν	CT-7	
B-44-23	180+85	A-7-6	960	2.2	25	23	М	CT-8	
B-44-24	190+95	A-7-6	500	1.9	20	21	Q	CT-9	

Soil-lime mix design testing was performed on samples CT-2 through CT-6. These samples were selected to represent the entire project length where cohesive soils were encountered. Soil-lime mix design testing was performed in accordance with ODOT S1120. Soil pH testing was performed at incremental percentages of quicklime (by dry unit weight) on each complete test sample to determine the minimum lime percentage (MLP) to increase the pH of the soil-lime mixture to 12.4, which is provided in the following table. ODOT S1120 requires a minimum average eight-day unconfined compressive strength of 100 psi and a 50 psi increase in the unconfined compressive strength of the untreated soil. The results of the UCS testing are summarized in the following table.

Executive Summary

Complete Mix Design Testing Sample ID	Soil Type	Minimum Lime Percentage	Lime Percentage	Average Expansion (+) / Shrinkage (-)	Average 8-day UCS (psi)	Recommended Quicklime Content (%)							
			0%	-	40								
	A 40	2.00/	2%	0.1%	65	5.0							
01-2	А-4а	2.0%	4%	0.1%	100	5.0							
			6%	0.2%	120								
			0%	-	50								
07.0	4.0-	0.00/	2%	0.1%	95								
CT-3	A-6a	A-6a	A-6a	A-6a	A-6a	A-6a	A-6a	3 A-6a	2.0%	4%	0.2%	115	4.0
			6%	0.2%	115								
			0%	-	50								
	A-6b	A-6b	A. Ch 2.00/	3%	0.1%	105	4.0						
C1-4			00-A	A-00	A-00	00-A	A-6D	3.0%	5%	0.2%	135	4.0	
			7%	0.2%	130								
			0%	-	45								
CT 5	A 7 6	2.00/	3%	0.1%	120	4.0							
01-5	A-7-0	3.0%	5%	0.1%	135	4.0							
			7%	0.1%	135								
			0%	-	45								
СТА	A 7 6	0.00/	7.6 2.09/	2%	0.2%	80	5.0						
01-0	A-7-0	2.070	4%	0.1%	100	5.0							
			6%	0.1%	110								

- Based upon the evaluation of the eight-day unconfined compressive strength test data and the minimum lime percentage to increase the pH of the soil-lime mixture to 12.4, it is recommended that 5.0% quicklime content be utilized at an application rate of 57.8 lbs/yd² (based on a treatment depth of 14 inches and an in-situ dry unit weight of 110 lbs/ft³) in all subgrade areas that are to be lime stabilized. The application rate will vary depending on the actual in-situ dry unit weight of the soil, which is dependent on the field conditions encountered at the time of construction.
- Soil-cement mix design testing was performed on sample CT-1 (boring B-44-09) due to the granular subgrade material encountered at this boring location and on samples CT-5, CT-7, CT-8, and CT-9 due to the possible incorporation of the underlying granular stratum in the stabilization process. Soil-cement mix design testing was performed in accordance with ODOT S1120. ODOT S1120 requires an eight-day unconfined compressive strength (UCS) of 100 psi and a 50 psi increase in the unconfined compressive strength of the untreated soil. The results of the UCS testing are summarized in the following table.

v

Executive Summary

Complete Mix Design	complete Mix Design Soil		8-	day UCS (p:	Minimum Required Cement	
Testing Sample ID	Туре	(psi)	3% PC	5% PC	7% PC	Content (%)
CT-1	A-1-b	45	125	180	205	4.0
CT-5	A-7-6	45	110	-	165	4.0
CT-7	A-6b	50	115	135	170	4.0
CT-8	A-7-6	45	120	135	155	4.0
CT-9	A-7-6	50	135	150	165	4.0

Based upon the evaluation of the eight-day UCS data, it is recommended that 4.0% Portland cement content be utilized at an application rate of 41.4 lbs/yd² (based on an in-situ dry unit weight of 115 lbs/ft³ and a treatment depth of 14 inches) in all subgrade areas that are to be cement stabilized. The application rate will vary depending on the in-situ dry unit weight of the soil, which is dependent on the field conditions encountered at the time of construction.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

PART I: SUBGRADE EXPLORATION REPORT

1.0 INTRODUCTION

Resource International, Inc. (Rii) has completed a subgrade exploration report for the design and construction of the proposed pavement reconstruction as part of the Geotechnical Services for the Pavement Replacement Program in Lorain County, Ohio. The project length is approximately 5.3 miles and encompasses both the eastbound and westbound lanes of the Ohio Turnpike (I-80/I-76) between Mile Post 216.1 and Mile Post 221.26.

In 2009, Rii conducted an investigation of the entire alignment of the Ohio Turnpike, titled <u>Mainline Pavement Evaluation Master Plan Report</u> (Phase I report) dated September 25, 2009, to evaluate the overall condition of the roadway and subsequently rank individual 5-mile sections based on the priority in which pavement reconstruction should be conducted. The priority was based on several factors including the existing subgrade and pavement condition along with the maintenance history of each section. Also included in the Phase I report was historical data, along with data collected in 2009 in support of the investigation. Historical data presented in the Phase I report consisted of Dynaflect deflection data collected in 1992, which was not collected along the project alignment, and correlated California Bearing Ratio (CBR) values from soil samples obtained from the third lane widening investigation performed in 1995 between MP 216.1 to MP 218.4. Data presented in the report from the 2009 testing consisted of falling weight deflectometer (FWD) and automated dynamic cone penetrometer (ADCP) data collected for the entire project length.

In addition to the 2009 report, historic plan records were also reviewed to verify the continuity of the soil conditions between borings. These records included the soil profile sheets from the Ohio Turnpike and Infrastructure Commission (OTIC) Contract Number 71-95-39, which was performed in 1995.

It is currently proposed to reconstruct the existing pavement along the eastbound and westbound lanes of this portion of the Ohio Turnpike. It should be noted that this project encompasses a large percentage of Section 44 of the 48 sections as prioritized by Rii. This report contains results of the geotechnical investigation performed between August and September 2014, and recommendations for design CBR and subgrade improvement considerations are contained herein.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Several episodes of ice advanced throughout Ohio during the Pleistocene Epoch. Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the state, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections grouped by age, depositional process and geomorphic occurrence.

Physiographically, the site lies within the Killbuck-Glaciated Pittsburgh Plateau Region of the Glaciated Allegheny Plateaus Section. This region consists of a topography containing ridges and flat uplands covered with thin drift dissected by both broad drift-filled valleys and narrow rock-walled valleys. The area is covered by thin to thick ground moraine deposits of clavey till from the Late Wisconsinan glacial stage.

Based on bedrock geology and topography maps, obtained from the Ohio Department of Natural Resources (ODNR), the bedrock underlying the glacial deposits consists primarily of the Middle to Lower Pennsylvanian-aged Allegheny and Pottsville Groups, undifferentiated. The units are undifferentiated because there are no subdivisions of the unit which have been determined. The Alleghenv and Pottsville Groups consist of grav and greenish gray to black, interbedded shale, siltstone, sandstone, conglomerate, limestone, underclay, coal and flint. The units commonly intertongue and intergrade and rapidly change rock types both horizontally and vertically. The bedrock unit ranges from non-bedded to massively-bedded and the entire undifferentiated unit ranges between 450 to 620 feet thick.

Along the project alignment, the bedrock surface generally follows the slope of the ground surface, which slopes down to the southeast and east toward Meander Creek Reservoir. A bedrock valley is present below and is generally aligned with the existing Meander Creek Reservoir. The bedrock surface ranges from an approximate elevation of 925 feet mean sea level (msl) near the western project limits, just east of the reservoir crossing under I-76, to an approximate elevation of 1,000 feet msl near the center and eastern project limits. According to bedrock topography mapping, the depth to the bedrock surface along the project alignment ranges from approximately 0 to 55 feet below existing grade. Bedrock was encountered in five (5) of the borings performed for this exploration at depths ranging from 1.3 to 3.4 feet below the pavement surface, which corresponds to elevations ranging from 961.5 to 991.5 feet msl. An illustration of the general geology of Ohio is presented Appendix I-A.

2.2 Existing Conditions

The Ohio Turnpike runs along the northern portion of Ohio, beginning at the border of Indiana near Columbia, Ohio, and extending east to the Pennsylvania border near Hubbard, Ohio. The project section for the current exploration (between MP 216.1 and 221.26), begins just south of the Ellsworth Bailey Road crossing in Trumbull County, approximately 0.5 miles north of the county line, and continues along I-80 into Mahoning County to the interchange with I-76, where the alignment continues southwest along I-76 and I-80 splits off to the east. The project limits are roughly between the Ellsworth Bailey Road crossing over I-80 and the I-76 crossing over the Meander Creek Reservoir. The project alignment traverses through Lordstown Township in Trumbull County and Jackson Township in Mahoning County. The existing I-80 north of the I-76 interchange is a six-lane, divided highway with composite asphalt over concrete pavement. Between approximately MP 217.9 and 218.5, the existing pavement section consists solely of asphalt pavement. The existing I-76, starting at the north end of the

interchange, is a four-lane, divided highway with composite asphalt over concrete pavement. According to project plan and profile information provided by OTIC and CT Consultants, there are nine (9) underpasses/overpasses between Ellsworth Bailey Road overpass and the Meander Creek Reservoir crossing, and approximately sixteen (16) culvert structures for creek/drainageways crossings also occurring between these limits. The terrain along the project alignment is gently rolling and slopes down to the southeast and east toward the Meander Creek Reservoir at the east end of the alignment, with an overall change in elevation along the project alignment of approximately 65 feet.

3.0 EXPLORATION

Between August 13 and September 4, 2014, a total of twenty-seven (27) test borings were completed within the existing alignment of the Ohio Turnpike (I-80/I-76) at the locations illustrated on the boring plan in Appendix I-B. The borings drilled for this investigation were designated as B-44-01 through B-44-27, with the first number indicating the section number of this portion of the Ohio Turnpike used in the priority ranking system and the second number indicating the boring number. The borings were drilled to completion depths ranging from 2.1 to 9.1 feet below the existing ground surface. Pavement cores of 16 inches in diameter were also obtained at each location to allow for adequate bulk samples to be collected for chemical subgrade stabilization design. All borings under the current exploration were performed in general accordance with the Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations (SGE) dated July 2014.

Boring Number	Station	Offset	Mile Post	Northing	Easting	Ground Elevation ¹ (feet msl)	Boring Depth (feet)
B-44-01	541+48	51.2' Rt.	216.34	540296.658	2416901.511	996.0	7.9
B-44-02	550+77	50.8' Lt.	216.51	539813.897	2417701.748	1000.3	7.9
B-44-03	558+33	48.1' Rt.	216.66	539276.653	2418242.326	1002.5	7.9
B-44-04	5+17	51.8' Lt.	216.87	538687.089	2419179.155	998.5	7.9
B-44-05	14+46	52.1' Rt.	217.04	538040.665	2419854.420	1003.9	7.8
B-44-06	23+75	51.0' Lt.	217.22	537558.797	2420655.340	1013.2	7.9
B-44-07	33+04	52.7' Rt.	217.39	536912.572	2421330.757	1017.9	7.7
B-44-08	42+33	51.6' Lt.	217.57	536423.233	2422128.748	1009.5	7.9
B-44-09	51+62	52.8' Rt.	217.75	535713.144	2422735.960	991.5	7.5
B-44-10	60+89	60.5' Lt.	217.92	535084.488	2423427.015	981.3	7.9
B-44-11	70+10	17.4' Rt.	218.10	534281.174	2423887.256	982.6	2.1
B-44-12	79+48	63.0' Lt.	218.27	533530.531	2424455.694	994.8	4.0

4

Part I: Subgrade Exploration Report

Boring Number	Station	Offset	Mile Post	Northing	Easting	Ground Elevation ¹ (feet msl)	Boring Depth (feet)
B-44-13	89+17	26.7' Rt.	218.46	532663.489	2424896.555	1008.9	3.7
B-44-14	98+06	50.2' Lt.	218.63	531952.166	2425436.045	1013.9	7.9
B-44-15	107+38	29.3' Rt.	218.80	531121.536	2425865.908	1009.8	8.0
B-44-16	121+84	59.4' Lt.	219.08	529945.567	2426712.442	1002.4	7.8
B-44-17	125+87	29.7' Rt.	219.15	529557.468	2426851.902	1000.6	7.9
B-44-18	135+22	50.8' Lt.	219.33	528809.379	2427418.858	995.6	7.9
B-44-19	144+39	29.4' Rt.	219.50	527990.578	2427840.438	990.4	8.0
B-44-20	153+79	51.0' Lt.	219.68	527238.756	2428409.613	983.7	9.1
B-44-21	163+35	50.8' Rt.	219.86	526375.943	2428833.500	972.6	8.2
B-44-22	172+37	50.8' Lt.	220.03	525667.130	2429400.649	962.5	7.9
B-44-23	180+85	50.4' Rt.	220.19	524899.537	2429776.457	952.8	8.3
B-44-24	190+95	51.1' Lt.	220.38	524154.926	2430466.714	958.3	8.0
B-44-25	200+02	50.0' Rt.	220.56	523412.485	2430996.970	971.3	8.5
B-44-26	209+53	51.2' Lt.	220.74	522832.041	2431756.377	974.2	3.8
B-44-27	217+83	51.0' Rt.	220.89	522211.512	2432316.316	964.8	7.8

1. Elevations determined from plan and profile and cross section information provided by the OTIC and CT Consultants.

The boring and pavement core locations were determined and field located by Rii representatives following concurrence reviews by the OTIC. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were determined from plan and profile and cross section information provided by the OTIC and CT Consultants.

The borings were advanced using a truck-mounted rotary drilling machine utilizing a 4.5-inch, solid flight auger to advance the holes. In general, standard penetration test (SPT) and split spoon sampling of soils were performed continuously to a depth of 6.0 feet below the existing pavement structure or to auger refusal on bedrock. The SPT, per ASTM D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter, split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The blows from the second and third intervals are added to obtain the number of blows per foot (bpf). SPT blow counts aid in determining soil properties applicable in pavement system design. Measured blow count (N_m) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs in Appendix I-D.

$$N_{60} = N_m^*(ER/60)$$

Where: N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the Mobile B53 truck-mounted drill rig used for this project was calibrated on April 26, 2013, and has a drill rod energy ratio of 77.7 percent.

Upon completion of drilling and sampling, the borings were backfilled with a mixture of soil cuttings and any removed aggregate base material. The remaining void space was filled with Quickrete DOT mix fast-set concrete.

During drilling, field personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D2216	98
Plastic and Liquid Limits	AASHTO T89, T90	45
Gradation – Hydrometer	AASHTO T88	45

Table 2. Laboratory Test Schedule ¹

1. Testing quantities and procedures listed above are for the geotechnical borings and analysis only. Testing quantities and procedures for the mix design are not included in the table above.

These tests are necessary to classify the soil according to the ODOT classification system. The results are also used to estimate engineering properties of importance in pavement design and soil related construction considerations. Results of the laboratory testing are presented on the boring logs in Appendix I-D. A description of the soil terms used throughout this report is presented in Appendix I-C.

Hand penetrometer readings, which provide a rough estimate of the unconfined compression strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N₆₀). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

In addition to the traditional soil borings conducted for the current exploration, dynamic cone penetrometer (DCP) tests were also conducted at each location to determine the in-situ subgrade condition. The DCP tests were performed at each location prior to disturbance of the subgrade soils by the borings. The tests were conducted until the maximum stroke of the drive rods was achieved or until refusal on bedrock was obtained. The DCP, per ASTM D6951, is conducted using a duel mass 17.6-pound manual drop hammer free falling 22.6 inches to drive a ⁵/₈-inch diameter steel drive rod with a 0.79-inch diameter, 60° conical tip a maximum of 54 inches below the pavement surface. The DCP testing was conducted through the existing pavement, by drilling a 1.0-inch diameter hole through the pavement, and then inserting the drive rod and beginning the test. The cumulative penetration depth of the drive rods and number of blows from the hammer were recorded at approximate 5.0 cm intervals and subsequently reduced and presented as detailed in ASTM D6951.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory testing. Classification follows the July 2014 version of the ODOT SGE. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surficial Material

Table 3 below notes the measured pavement section at each test boring location in order of the locations numbered west to east along the Ohio Turnpike:

h											
Test Boring	Asphalt Thickness (in)	Concrete Thickness (in)	Slag Base Thickness (in)	Test Boring	Asphalt Thickness (in)	Concrete Thickness (in)	Slag Base Thickness (in)				
B-44-01	5.0	11.0	7.0	B-44-15	6.0	11.0	7.0				
B-44-02	6.0	12.0	5.0	B-44-16	5.0	11.0	6.0				
B-44-03	5.0	11.0	7.0	B-44-17	7.0	11.0	5.0				
B-44-04	5.0	11.0	7.0	B-44-18	7.0	10.0	6.0				
B-44-05	4.0	10.0	8.0	B-44-19	5.0	11.0	8.0				
B-44-06	5.0	10.0	8.0	B-44-20	5.0	11.0	10.0				
B-44-07	2.0	11.0	7.0	B-44-21	6.0	10.5	9.5				
B-44-08	5.0	10.0	8.0	B-44-22	7.0	12.0	3.0				
B-44-09	3.0	11.0	3.0 ¹	B-44-23	7.5	10.5	9.0				
B-44-10	17.0	-	7.0	B-44-24	6.0	10.0	8.0				
B-44-11	16.0	-	-	B-44-25	5.5	16.0	8.5				

 Table 3. Summary of Surface Material Profile

Part I: Subgrade Exploration Report

Test Boring	Asphalt Thickness (in)	Concrete Thickness (in)	Slag Base Thickness (in)	Test Boring	Asphalt Thickness (in)	Concrete Thickness (in)	Slag Base Thickness (in)
B-44-12	17.0	-	5.0	B-44-26	5.0	11.0	16.0
B-44-13	16.0	-	3.0 ¹	B-44-27	4.5	5.5	12.0
B-44-14	6.0	10.0	7.0				

1. Base material consists of No. 2 stone in boring B-44-09 and aggregate base in boring B-44-13.

Borings B-44-10 through B-44-13 encountered 16.0 to 17.0 inches of asphalt overlying 7.0 and 5.0 inches of slag base in borings B-44-10 and B-44-12, respectively, at the ground surface and 3.0 inches of aggregate base in boring B-44-13. The remaining borings encountered 2.0 to 7.5 inches of asphalt overlying 5.5 to 16.0 inches of concrete followed by 3.0 to 16.0 inches of slag base at the ground surface, with the exception of boring B-44-09, which encountered 3.0 inches of No. 2 stone beneath the concrete. The origin and composition of the slag base material was further investigated by Rii, and the results are presented in a separate report.

4.2 Subsurface Soils

Underlying the existing pavement materials, natural soils or existing embankment fill were encountered consisting primarily of cohesive soils with intermittent seams of granular material. The cohesive soils were generally described as brownish gray, brown, gray, dark gray and black sandy silt, silt, silt and clay, silty clay and clay (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6). The granular soils were described as brownish gray, light brown and brown gravel, gravel and sand and gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-6), and were typically encountered where shallow bedrock was present. The gravel encountered in boring B-44-13 consisted of pea gravel overlying a geotextile fabric separator between the pea gravel and shale bedrock.

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered ranged from medium stiff ($0.5 < HP \le 1.0$ tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 1.0 tsf to over 4.5 tsf (limit of instrument). The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soils encountered in the borings ranged from loose ($5 \le N_{60} \le 10$ blows per foot [bpf]) to dense (31 \leq N₆₀ \leq 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 5 bpf to split spoon sampler refusal, generally increasing with depth. Split spoon sampler refusal is defined as exceeding 50 blows with less than 6.0 inches of penetration by the split spoon sampler

Natural moisture contents of the soil samples tested ranged from 5 to 29 percent. The natural moisture contents of the soil samples tested for plasticity index ranged from 15 percent below to 5 percent above their corresponding plastic limits. In general, the soils exhibited natural moisture contents estimated to be significantly below to moderately above optimum moisture levels.

Sulfate testing was performed on all bulk samples in accordance with the Texas Department of Transportation test method TEX-145-E in the upper soils of the existing subgrade along the proposed alignment, as outlined in the current ODOT Geotechnical Bulletin GB1: Plan Subgrades (GB1). Based on the results of the testing, the sulfate contents of the subgrade soils range from 60 to 3,680 parts per million (ppm or mg/kg of material).

4.3 Bedrock

Bedrock was encountered in borings B-44-11, B-44-12, B-44-13, B-44-26 and B-44-27 at depths ranging from 1.3 to 3.4 feet below the existing ground surface, as determined by split spoon sampler refusal. The bedrock encountered consists of gray, highly weathered shale. Additionally, auger refusal was encountered in borings B-44-11, B-44-12, B-44-13 and B-44-26 at depths ranging from 3.1 to 4.7 feet below the ground surface. Auger refusal is defined as no or insignificant observable advancement of the augers with the weight of the drill rig driving the augers.

On December 4 and 8, 2014, six (6) offset borings, designated as B-44-10A through B-44-11C, were performed in the vicinity of boring B-44-11, where bedrock was the shallowest, to delineate the horizontal limits and depth of the shallow bedrock. The locations of the offset boring locations are shown on the boring logs in Appendix I-B. Below the pavement materials and slag base material, two continuous 2.0-foot interval split spoon samples were obtained to determine the depth to bedrock. Based on the conditions encountered in the offset borings, bedrock was not encountered in borings B-44-10A and B-44-10B, and bedrock was encountered in borings B-44-10C through B-44-11C at depths ranging from 3.5 to 4.5 feet below the pavement surface.

4.4 Groundwater

Groundwater was not encountered during or at the completion of drilling in any of the borings performed for this exploration. Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix I-D.

4.5 DCP Test Results

DCP tests were conducted to depths ranging from 3.35 to 32.83 inches below the existing pavement sections along the project alignment. Where refusal on bedrock was not encountered, the tests were terminated when the maximum stroke of the drive rods was achieved (which varies based on the existing pavement section at each test location). The cumulative penetration depth of the drive rods and number of blows from the hammer were recorded at approximate 5.0 cm intervals, and these values were reduced to provide a penetration rate (PR) in units of millimeters per blow (mm/blow) of the soil. The PR of the soil for each individual test location was determined based on the average PR of the data set for the respective test. In general, the PR recorded over the project length ranged from 4.6 to 40.2 mm/blow. All depth measurements for the DCP are referenced to the top of the subgrade (bottom of slag or aggregate base). Results of the DCP testing performed for the current investigation are presented in Appendix I-E.

ANALYSES AND RECOMMENDATIONS 5.0

Data obtained from the drilling and testing program have been used to determine pavement support capabilities for the soil encountered at the site. These parameters have been used to provide guidelines for the design of the pavement systems, as well as the construction specifications related to the placement of the pavement systems and general earthwork recommendations, which is discussed in the following paragraphs.

5.1 **Pavement Subgrade Recommendations**

The soil data compiled indicates that the subgrade soil for the proposed pavement along the alignment will consist primarily of medium stiff to hard silt and clay and silty clay (ODOT A-6a, A-6b) with isolated areas of stiff to very stiff sandy silt and clay (ODOT A-4a, A-7-6) and loose to dense gravel and gravel and sand (ODOT A-1-a, A-1-b). As noted in Section 4.3, shallow bedrock was also encountered in borings B-44-11 through B-44-13, B-44-26 and B-44-27 at depths ranging from 1.3 to 3.4 feet below the existing ground surface.

The moisture content of cohesive soil has a significant effect on the physical properties of the material. It should be noted that the moisture contents illustrated on the boring logs, and utilized in this analysis, represent the conditions during the drilling phase of the project. The referenced borings for subgrade analysis were drilled between August 13 and September 4, 2014. These soil conditions, especially in the surficial soils, may not coincide with the soil conditions that will be encountered during construction. Consequently, the extent/need for subgrade improvement is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction.

5.1.1 DCP Subgrade Analysis

Using the criterion presented in Section 4.5, the PR observed from the DCP tests ranged from 4.6 to 40.2 mm/blow, with an average PR for all tests performed of 18.3 mm/blow. The PR values can be correlated to CBR values for use in the evaluation of the subgrade soils using the Army Corps of Engineers developed equations presented in ASTM D6951/D6951M as follows:

 $CBR = \frac{292}{\left(DCPI\right)^{1.12}};$ $CBR = \frac{1}{(0.017019 \times DCPI)^2}$ for CL soils with CBR < 10 from above; Where: *DCPI* = PR*(Hammer Factor)

Hammer Factor = 1.0 for a 17.6 lb hammer

Please note that the selection of the appropriate correlation for each test is a matter of professional judgment and was based on a comparison with the soil borings conducted for this exploration. To account for the presence of bedrock and very dense granular seams or hard cohesive soils where low PR and refusal on bedrock were encountered, the correlated CBR value was limited to a maximum value of 12.

The correlated CBR from the DCP ranges from 2 to 12 with an average CBR value of 10. It should be noted that the CBR obtained from DCP testing represents the in-situ subsurface conditions at the time of the testing.

As noted in Section 4.5, DCP tests were conducted to depths ranging from 3.35 to 32.83 inches below the existing pavement sections. In general, the measured PR in upper 12 to 16 inches of the soil subgrade at the test locations was generally higher than the underlying soils. Based on the results of the DCP analysis, 70 percent of the test locations indicated high PR values in the upper 12 inches or less of soil and less than 20 percent indicated high PR values at depths greater than 16 inches. The high PR values are indicative of weak subgrade soils present within these depths.

Previous ADCP data collected in 2009 was also reviewed. In general, the data from the 2009 tests yielded similar trends in PR with depth as those noted in the current tests. As noted above, data obtained from ADCP testing represents the in-situ subsurface conditions at the time of the testing. The tests from the 2009 investigation within the limits of the project were conducted on April 23 and May 21, 2009.

5.1.2 ODOT GB1 Analysis

Based on the soil conditions encountered during the drilling phase, it is estimated that surficial soils (top sample) and the subgrade soils within the upper 6.0 feet of the proposed subgrade surface will require some level of stabilization under ODOT Geotechnical Bulletin GB1: Plan Subgrades. The GB1 subgrade analysis determines the subgrade strength based on the results of laboratory testing for the split spoon soil samples obtained from the soil borings. From the laboratory testing, a group index (GI) value is calculated and a correlated CBR value is obtained based on the respective GI value.

The soil borings performed in support of the proposed pavement reconstruction were tabulated in the GB1 analysis presented in Appendix I-E. The following table notes the average site parameters from the GB1 analysis for the borings conducted for the current exploration.

Average N∟	Average Pl	Average Moisture	Average Optimum Moisture	Average Group Index	Average CBR
15	16	16	15	9.0	6

Table 4. Average Site Parameters from Current Investigation

It should be noted that the average CBR listed in Table 4 is based on a limited data set. The current ODOT SGE specifies that soil borings should be conducted at a maximum interval of 400 feet to accurately evaluate the soil subgrade. The soil borings conducted for the current exploration were obtained at an average interval of approximately 925 feet.

5.1.3 Subgrade CBR Considerations

Table 5 lists the average GI of the soil samples from each boring as well as the average PR of the data set for each ADCP test and the correlated CBR values associated for each analysis type.

Test Boring	Station	Offset	GB1 GI	GB1 CBR ¹	ADCP PR (mm/blow)	ADCP CBR ²
B-44-01	541+48	51.2' Rt.	8	7	21.0	8
B-44-02	550+77	50.8' Lt.	10	6	22.5	7
B-44-03	558+33	48.1' Rt.	10	6	40.2	2

Table 5. Summary of Soil and ADCP Correlated CBR Values

Test Boring	Station	Offset	GB1 GI	GB1 CBR ¹	ADCP PR (mm/blow)	ADCP CBR ²
B-44-04	5+17	51.8' Lt.	9	6	14.8	12
B-44-05	14+46	52.1' Rt.	9	6	22.6	7
B-44-06	23+75	51.0' Lt.	9	6	23.9	6
B-44-07	33+04	52.7' Rt.	9	6	14.5	12
B-44-08	42+33	51.6' Lt.	8	7	14.9	12
B-44-09	51+62	52.8' Rt.	7	7	14.8	12
B-44-10	60+89	60.5' Lt.	8	7	17.2	12
B-44-11	70+10	17.4' Rt.	0	12	5.2	12
B-44-12	79+48	63.0' Lt.	11	6	12.2	12
B-44-13	89+17	26.7' Rt.	0	12	16.6	12
B-44-14	98+06	50.2' Lt.	10	6	21.5	7
B-44-15	107+38	29.3' Rt.	12	5	18.7	11
B-44-16	121+84	59.4' Lt.	6	7	17.4	12
B-44-17	125+87	29.7' Rt.	11	6	22.8	7
B-44-18	135+22	50.8' Lt.	11	6	17.6	12
B-44-19	144+39	29.4' Rt.	10	6	19.7	10
B-44-20	153+79	51.0' Lt.	12	5	28.7	4
B-44-21	163+35	50.8' Rt.	4	8	22.3	7
B-44-22	172+37	50.8' Lt.	11	6	10.7	12
B-44-23	180+85	50.4' Rt.	8	7	31.3	4
B-44-24	190+95	51.1' Lt.	13	5	13.9	12
B-44-25	200+02	50.0' Rt.	10	6	13.8	12
B-44-26	209+53	51.2' Lt.	0	12	4.6	12
B-44-27	217+83	51.0' Rt.	8	7	11.7	12

1. CBR value from soil data based the average GI for the samples of the respective boring.

2. CBR value from DCP based on the average PR for the data set of the respective test. The correlated CBR value from the DCP testing was limited to a maximum value of 12.

A review of the historic data presented in the 2009 investigation was also conducted to verify the current findings and to supplement the current data for the evaluation of the subgrade strength. The data presented indicated that CBR values from the 2009 FWD

13

testing ranged from 5 to 11 over the project length, with the exception of the test performed at MP 218.7 in the westbound direction, which resulted in a CBR value of 22. The overall average CBR of the historic data, consisting of the 1995 correlated CBR values from soil samples and the 2009 DCP and FWD testing, along the project alignment was 8. In general, the subgrade strengths determined from the historic data matched relatively closely with the subgrade strengths determined from the current data.

Rii recommends that a CBR of 7 be used in pavement design based on the current and historic subgrade strength data analyzed and reviewed. A graphical output of the CBR values from all of the historic and current testing along the project length is provided in Appendix I-F.

Please note that the recommended CBR value considers that the materials utilized for the road subgrade in fill areas are equivalent to or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value as represented above.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement.

5.1.4 Global Stabilization

Per GB1 specifications, for all interstates and divided highways with four or more lanes more than 1.0-mile in project length, a global stabilization option is recommended to provide a stable, consistent base along the project alignment. GB1 provides global stabilization recommendations based upon the average site parameters, as noted in Table 4 in Section 5.1.3. Therefore, Rii recommends a global stabilization of the subgrade as outlined below.

The GB1 subgrade analysis indicated chemical stabilization depths ranging from 14 to 16 inches at select locations. Applying the average values presented in Table 4 and referencing Figure B in the ODOT GB1, chemical stabilization consisting of 12 inches of lime or cement, per ODOT Item 206, is recommended as a global stabilization option. It should be noted that the recommended depth of stabilization is based solely on the average site parameters over the entire project length. Significant variation in any of the site parameters at specific locations can skew the average of the respective parameter.

As noted from the DCP results presented in Section 5.1.1 and Appendix I-E, the PR in upper 12 inches of the soil subgrade at the test locations was generally higher than the underlying soils, indicating that weak subgrade soils are present within these depths. The depth of weak subgrade soils determined from DCP analysis generally

corresponded with the recommended stabilization depths determined from the ODOT GB1 analysis, which determines the required depth of stabilization based solely on the N₆₀ value obtained from the SPT testing for the upper sample of the proposed subgrade.

Rii presents two global stabilization options, with Option 1 being the recommended alternative, based on an evaluation of the subgrade using the ODOT GB1 analysis in conjunction with the DCP data collected at each boring location; these options should be evaluated based upon a cost and constructability analysis:

Option 1. The subgrade should be chemically stabilized with 12 inches of *(Recommended)* cement or 14 inches of quicklime, as outlined in the following table and per ODOT Supplement 1120. The recommended application rate for the estimation of the quicklime and cement content required for stabilization is presented in Part II of this report.

Begin Station ¹	End Station ¹	Length (feet)	Chemical Type	Stabilization Depth (inches)
528+85 ²	47+00 ²	8,233	Quicklime	14
47+00	93+60	4,660	Cement	12
93+60	204+80	11,120	Quicklime	14
204+80	237+19	3,239	Cement	12

Table 6. Summary of Chemical Stabilization Limits

1. Begin and End project limits determined from plan information provided by the OTIC and CT Consultants.

2. Sta. 564+18 back = Sta. 0+00 ahead at Trumbull and Mahoning County line.

Option 2. The subgrade should be stone stabilized via a 1.0-foot undercut and replacement with Type B, C or D ODOT Item 703.16C granular material installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in Section 5.3 of Part I of this report.

Material identified as gravel and sand and gravel (ODOT A-1-a, A-1-b) was encountered below the pavement and slag base in boring B-44-09, B-44-13 and B-44-22. As noted in Section 4.2, the material encountered below pavement and slag base consisted of pea gravel. These material types will not develop adequate strength for a stabilized subgrade per Supplement 1120 if stabilized using quicklime. On December 8 and 9, 2014, a total of five (5) offset borings, designated as B-44-12A, B-44-13A, B-44-21A, B-44-22A and B-44-22B, were performed in the vicinity of borings B-44-13 and B-44-22 to delineate the extents of the gravel material encountered. Based on the conditions encountered in the offset borings, the gravel material encountered in the original boring locations at B-44-13 and B-44-22 was not encountered in the offset borings. Therefore,

these soil types should be isolated to the area of the original boring locations. Where encountered during construction near these borings, this material should be overexcavated to a depth of 1.5 feet and replaced with ODOT Item 203 embankment and subsequently stabilized using the proposed stabilization method as noted in Table 6.

Please note that material identified as pea gravel (ODOT A-1-a) was encountered below the asphalt pavement and extending to the shale bedrock in boring B-44-13. This type of material is not suitable for pavement support and also cannot be chemically stabilized due to the uniform gradation of the material. Therefore, it is recommended that any pea gravel material encountered during construction be completely removed and replaced with ODOT Item 204 embankment material and subsequently stabilized using guicklime or cement. Based on the conditions encountered in offset borings B-44-12A and B-44-13A, the pea gravel material appears to be localized to the area of boring B-44-13.

As noted in Section 4.3, shallow bedrock was encountered in the area of borings B-44-11 through B-44-13, B-44-26 and B-44-27. Based on the depth of bedrock encountered in the borings and subsequent offset borings performed in the area of borings B-44-11 and B-44-12, Rii does not anticipate the need for bedrock undercuts within these zones. Please note that given the spacing of the borings near the end of the project limits, there is a potential for encountering areas where the bedrock surface may be encountered during construction. Should bedrock be encountered during construction, the bedrock should be undercut to 1.0 foot below the proposed bottom of pavement section to remove bedrock per ODOT Item 204.05 and replaced with ODOT Item 203 embankment. Following placement of the embankment, the area of undercut should be stabilized to a depth of 10.0 inches using the proposed stabilization chemical noted in Table 6 for the respective area.

Per ODOT GB1 requirements, if it is elected to perform global stabilization, the entire subgrade should be stabilized using one of the global stabilization options provided above. Upon completion of the stabilization, the entire subgrade should be proof rolled to verify that stability has been achieved.

The impact of the stabilization options with respect to utility clearances, maintenance of traffic and access during construction, and dust control should be considered prior to selecting the stabilization option.

5.2 Remediation / Reuse of Existing Pavement

The existing pavement materials (existing asphalt and concrete base) are considered suitable for reuse in construction of the proposed pavement. If the existing asphalt is considered for reuse as reclaimed asphalt concrete pavement (RAP), it should be used as described in Part IV of Section SP400 of the OTC Specifications.

If the existing concrete is considered for reuse as crushed aggregate base, it should meet the requirements set forth in Section SP304 of the OTC Specifications with the exception of the sodium sulfate (Na₂SO₄) soundness testing. This test should be replaced with magnesium sulfate (MgSO₄) soundness testing, since magnesium sulfate soundness testing is more applicable when testing recycled concrete pavement to be used as crushed aggregate base.

5.3 Construction Considerations

All site work shall conform to the either the latest ODOT Construction and Material Specifications (CMS) or OTIC Specifications including the requirements that all excavation, embankment preparation, and construction follow either ODOT Item 200 (Earthwork) or the equivalent OTIC specification.

Prior to beginning excavation, grading, and/or embankment operations across the site. existing pavement sections, topsoil, or any otherwise unsuitable materials (as determined by a geotechnical engineer or an experienced soil technician), should be stripped and removed from proposed pavement areas prior to excavation.

Cohesive soil, primarily those containing silt, tend to become unstable (i.e., soft and flexing) under repeated loading from heavy rubber-tired vehicles. Therefore, heavy vehicle traffic on subgrades should be limited as much as possible during construction. The subgrade should be closely observed to determine if unstable conditions do develop which will require stabilization as determined by the geotechnical engineer.

The proposed subgrade surfaces should be proofrolled with sufficient proofrolling apparatus (preferably a fully-loaded tandem-axle dump truck), prior to placing engineered fill, where fill is required. A geotechnical engineer or an experienced soil technician should be present during proofrolling to determine if soft soil with inadequate stability exists. Subgrade instability encountered during a proofroll is indicated by deflection, cracking, or rutting of the surface. Soft soil is generally a result of the presence of very moist to wet cohesive soil. Deflecting subgrades may also be due to the presence of subsurface lenses of silt/fine sand, which typically contain water because the soil exhibits a higher porosity than the overlying and/or underlying cohesive soil. Based on the borings drilled, the moisture contents of the cohesive samples tested are considered to be significantly below to moderately above the corresponding optimum moisture contents. Soil in excess of the optimum moisture content creates the possibility of soft or unstable subgrades. It is likely that cohesive subgrade soil exhibiting natural moisture content in excess of its corresponding plastic limit will require some level of stabilization.

The extent/need for subgrade stabilization is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction. If required, the method of stabilization employed is a function of the type of instability encountered, the location (i.e., depth) of the instability and the resources available.

Fine-grained soils, such as silt and fine-grained sand, have the potential to create a frost-susceptible subgrade. During construction, it is recommended that this type of material, if encountered, be over-excavated and completely removed from within 2.0 feet of the proposed finished subgrade elevation. It is recommended that this overexcavation be backfilled with engineered fill in accordance to the following paragraphs. If other areas of the subgrade soil appear fine-grained with very low plasticity, it should be considered to be frost-susceptible silt, and be over-excavated.

Other stabilization options include: 1) scarifying, drying and recompacting, 2) mixing wet soil with dry soil, 3) undercutting unsuitable surficial soil and replacing it with controlled density fill, and 4) a geogrid subgrade reinforcement system. Other methods of subgrade stabilization are available and certainly may be effective (both physically and economically) in stabilizing the soil. The adequacy of any stabilization method should be verified through the construction of a test section. All proposed subgrade surfaces should be shaped to promote positive drainage, with a minimum slope of 2 percent or 0.25 inches per foot. Adequate drainage is necessary for maintaining the stability of the subgrade. Care should be taken during final grading so that no areas of potential ponding or standing water remain at the subgrade surface.

Sources of borrow material, if required, should be designated well in advance of construction. The material should be tested in the laboratory to verify the soil exhibits the minimum design CBR provided in Section 5.1. Note that cohesive soils, primarily types containing silt, tend to become unstable (i.e., soft and flexing) under repeated loading from heavy construction traffic. Therefore, construction traffic within the proposed pavement subgrade should be limited. The proposed subgrade should be closely observed to determine if unstable conditions do develop that would require stabilization as determined by the site geotechnical engineer.

Generally, materials utilized for engineered fill should be free of waste construction debris and other deleterious materials and meet the following requirements:

•	Maximum Dry Density per ASTM D 698	> 110 pcf
•	Liquid Limit	< 40
•	Plasticity Index	< 15
•	Organic Matter	< 3 percent
•	Maximum Particle Size	< 3 inches
•	Silt Content (between 0.075 and 0.005 mm)	< 45 percent

Compacted granular fill shall meet the above specification and additionally shall have a maximum 35 percent passing the No. 200 sieve.

As previously noted, Rii is performing additional testing on the existing slag base to determine its chemical composition. The results of this study will be presented in a

separate report; however, it is likely that this material will not be considered suitable for reuse as a base material.

The majority of the natural soils encountered on the site are considered suitable for reuse as structural fill for pavement support when compacted at its optimum moisture content. Fill soil placed for pavement support should be placed in loose lifts not to exceed 8.0 inches. All embankment fill should be placed and compacted in general accordance to Item 203 of the latest ODOT CMS. Drying wet soil can be expedited by the use of plows, discs, or by other approved methods. The final determination of whether a material is suitable for reuse as fill should be made by Rii or a field representative thereof. Fill soil should not be placed in a frozen condition or on a frozen subgrade.

All trenching and excavation procedures should follow applicable Occupational Safety and Health Administration (OSHA) standards, including adequate safety precautions conforming to OSHA standards for the personnel installing underground lines. Sloping or benching for excavations greater than 20 feet shall be designed by a registered professional engineer, and should be provided by the contractor to the engineer for review and comment.

5.3.1 Groundwater Considerations

Based on the observations made during and after drilling in the borings performed for this exploration, it is anticipated that little to no groundwater seepage will be encountered during construction. Where (if) groundwater is encountered during construction, proper groundwater control should be employed and maintained to prevent disturbance of cohesive subgrade soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. It is anticipated that any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. As stated previously, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

PART II: PORTLAND CEMENT AND QUICKLIME STABILIZATION MIX DESIGN REPORT

PORTLAND CEMENT AND QUICKLIME STABILIZATION OF SUBGRADE SOILS

Part II of this report provides a recommendation for the quicklime content and Portland cement content (percentage by dry weight) per ODOT Supplement (S) 1120 for OTIC Design Contract No. 71-14-08/OTIC construction Contract No. 39-15-02, as detailed below.

1.0 MIX DESIGN SAMPLING AND TESTING

Between August 14 and September 4, 2014, a total of twenty-four (24) bulk soil samples were obtained over the entire length of the project (MP 216.1 to MP 221.25) where borings were performed, which resulted in obtaining one sample for approximately 5,000 yd² of planned stabilized subgrade for the mainline driving lanes. Bulk samples of the soil subgrade were not obtained from boring locations B-44-11, B-44-13 and B-44-26 where shallow bedrock was encountered below the existing pavement structure.

1.1 Untreated Soil Laboratory Testing

Classification testing was performed in general accordance with ASTM D2216, D422 and D4318 and AASHTO M145 to classify the soil according to the ODOT soil classification system. In addition to classification testing, the organic content of the soil was determined in general accordance with ASTM D2974, and a one-point Proctor test was performed in general accordance with AASTHO T272 to determine the ODOT Curve designation for each bulk sample obtained. Sulfate content testing was performed in accordance with TxDOT method TEX-145-E. Results of the laboratory testing on the <u>untreated</u> samples are summarized in Table 1 below.

Sample ID	Station	Subgrade Elevation (feet msl)	Soil Type	Sulfate Content (ppm)	Organic Content (%)	Plasticity Index	Moisture Content (%)	ODOT Curve ID
B-44-01	541+48	994.1	A-6b	687	5.6	17	27	R
B-44-02	550+77	998.4	A-6b	213	0.9	17	16	G
B-44-03	558+33	1000.6	A-7-6	653	2.1	23	20	Q
B-44-04	5+17	996.6	A-7-6	500	1.0	21	11	0
B-44-05	14+46	1002.1	A-7-6	3,680	4.0	18	27	S
B-44-06	23+75	1011.3	A-6b	700	1.7	17	16	J
B-44-07	33+04	1016.2	A-6a	520	3.8	15	20	Ι
B-44-08	42+33	1007.6	A-6b	1,033	2.3	19	14	L
B-44-09	51+62	990.1	A-1-b	3,146	2.8	NP	20	I

Table 1. Sample Summary

Part II: Quicklime and Portland Cement Stabilization Mix Design Report

Sample ID	Station	Subgrade Elevation (feet msl)	Soil Type	Sulfate Content (ppm)	Organic Content (%)	Plasticity Index	Moisture Content (%)	ODOT Curve ID
B-44-10	60+89	979.3	A-6b	1,153	1.7	18	12	Ν
B-44-12	79+48	993.0	A-6b	800	2.9	18	13	Ν
B-44-14	98+06	1012.0	A-7-6	60	1.7	18	22	Ν
B-44-15	107+38	1007.8	A-6b	540	3.2	19	18	0
B-44-16	121+84	1000.6	A-4a	1,660	5.5	9	14	I
B-44-17	125+87	998.7	A-6b	420	1.0	21	14	L
B-44-18	135+22	993.7	A-7-6	800	1.9	23	20	Р
B-44-19	144+39	988.4	A-6b	420	1.9	18	18	I
B-44-20	153+79	981.5	A-7-6	820	5.5	26	21	н
B-44-21	163+35	970.4	A-6a	253	1.6	15	15	I
B-44-22	172+37	960.7	A-7-6	1,493	4.9	18	23	Р
B-44-23	180+85	950.6	A-7-6	960	2.2	23	25	М
B-44-24	190+95	956.3	A-7-6	500	1.9	21	20	Q
B-44-25	200+02	968.8	A-6b	407	2.2	19	17	I
B-44-27	217+83	963.0	A-6a	800	4.4	14	17	L

Based on the test results of the untreated soil samples, a total of five (5) Complete Testing (CT) mix design samples were created based on location, classification, organic content, sulfate content and one-point Proctor results for quicklime stabilization. Due to the granular subgrade soil encountered in boring B-44-09, a soil-cement mix design (CT-1) was performed at this location. Additionally, due to the potential incorporation of underlying granular/bedrock strata in the stabilization process, soil-cement mix designs were performed on samples B-44-05 (CT-5), B-44-10 (CT-7), B-44-23 (CT-8), and B-44-24 (CT-9). Table 2 lists the specific samples that were selected for mix design testing, which are considered to be representative of the entire project length.

Part II: Quicklime and Portland Cement Stabilization Mix Design Report

Table 2. Complete Testing (CT) Mix Design Samples								
Sample ID	Station	Soil Type	Sulfate Content (ppm)	Organic Content (%)	Moisture Content (%)	Plasticity Index	ODOT Curve ID	Complete Mix Design Testing Sample ID
B-44-09	51+62	A-1-b	3,146	2.8	20	NP	I	CT-1
B-44-16	121+84	A-4a	1,660	5.5	9	14	I	CT-2
	Ι							
B-44-21	163+35	A-6a	253	1.6	15	15	Н	-
B-44-07	33+04	A-6a	520	3.8	15	20	I	ст а
B-44-27	217+83	A-6a	800	4.4	14	17	L	01-5
B-44-01	541+48	A-6b	687	5.6	17	27	R	CT-4
B-44-02	550+77	A-6b	213	0.9	17	16	G	-
B-44-06	23+75	A-6b	700	1.7	17	16	J	-
B-44-08	42+33	A-6b	1,033	2.3	19	14	L	-
B-44-10	60+89	A-6b	1,153	1.7	18	12	N	CT-7
B-44-12	79+48	A-6b	800	2.9	18	13	N	-
B-44-15	107+38	A-6b	540	3.2	19	18	0	-
B-44-17	125+87	A-6b	420	1.0	21	14	L	-
B-44-19	144+39	A-6b	420	1.9	18	18	I	-
B-44-25	200+02	A-6b	407	2.2	19	17	I	-
	T	T	L	L	I	I	I	
B-44-03	558+33	A-7-6	653	2.1	23	20	Q	-
B-44-04	5+17	A-7-6	500	1.0	21	11	0	-
B-44-05	14+46	A-7-6	3,680	4.0	18	27	S	CT-5
B-44-14	98+06	A-7-6	60	1.7	18	22	N	-
B-44-18	135+22	A-7-6	800	1.9	23	20	Р	-
B-44-20	153+79	A-7-6	820	5.5	26	21	I	-
B-44-22	172+37	A-7-6	1,493	4.9	18	23	Р	CT-6
B-44-23	180+85	A-7-6	960	2.2	23	25	М	CT-8
B-44-24	190+95	A-7-6	500	1.9	21	20	Q	CT-9

Table 2 Complete Testing (CT) Mix Design Samples

1.2 Mix Design Laboratory Testing

Based on the soil types encountered, it is recommended that quicklime or Type I Portland cement be utilized as the soil subgrade stabilization chemical within the station limits outlined in Table 6 of Section 5.1.4 in Part I of this report. Quicklime is a lime chemical conforming to ASTM C977, and Type I Portland cement is a specified chemical conforming to ASTM C150 Standard Specification for Portland cement.

1.2.1 Quicklime Mix Design Laboratory Testing

After completing the untreated soil testing, soil-lime testing was performed in general accordance with AASTHO T272, ASTM D3551, D3877 and D5102 to determine the minimum percentage of guicklime based on the dry weight of soil for the project. Soil pH testing was performed at incremental percentages of guicklime (by dry unit weight) on each complete test sample to determine the minimum lime percentage (MLP) to increase the pH of the soil-lime mixture to 12.4. Soil-lime mixtures do not develop long-term pozzalonic bonds until the pH of the soil-lime mixture is at 12.4. Soil-lime pH testing was performed in general accordance with ASTM D6276. The results are summarized in Table 3.

Complete Mix Design Testing Sample ID	Soil Type	Minimum Lime Percentage (%)	
CT-2	A-4a	2.0	
CT-3	A-6a	2.0	
CT-4	A-6b	3.0	
CT-5	A-7-6	3.0	
CT-6	A-7-6	2.0	

 Table 3: Minimum Lime Percentage (MLP)

After confirming the MLP for samples CT-2 through CT-6, one-point Proctor tests were performed at MLP, MLP+2% guicklime, and MLP+4% guicklime. The results were plotted on the ODOT Family of Curves in accordance with ODOT S1015 and AASHTO T272 to determine the maximum dry unit weight and optimum moisture content of each soil-lime mixture. Upon completion of one-point Proctor tests, soil-lime expansion and unconfined compressive strength testing was performed in general accordance with ASTM D2166, D3551, D3877 and D5102 at 0%, MLP, MLP+2% quicklime, and MLP+4% guicklime. Per ODOT S1120, a minimum average eight-day unconfined compressive strength of 100 psi and a 50 psi increase in unconfined compressive strength from the untreated soil is required for all soil types. The results of the UCS testing are summarized in Table 4.

Complete Mix Design Testing Sample ID	Soil Type	Minimum Lime Percentage	Lime Percentage	Average Expansion (+) / Shrinkage (-)	Average 8-day UCS (psi)	Recommended Quicklime Content (%)	
			0%	-	40		
	A 10	2.0%	2%	0.1%	65	5.0	
01-2	A-4a	2.0%	4%	0.1%	100	5.0	
			6%	0.2%	120		
			0%	-	50		
CT-3	A-60	2 0%	2%	0.1%	95	4.0	
01-3	A-0a	A-0a 2.0%	4%	0.2%	115		
			6%	0.2%	115		
		ch 2.0%	0%	-	50	4.0	
	A-6b		3%	0.1%	105		
01-4		A-OD	3.0%	5%	0.2%	135	4.0
			7%	0.2%	130		
			0%	-	45		
	A-7-6 3.0%	2.09/	3%	0.1%	120	4.0	
C1-5		3.0%	5%	0.1%	135	4.0	
			7%	0.1%	135		
CT-6			0%	-	45		
	A 7 6	2.0%	2%	0.2%	80	5.0	
	A-1-0	2.0%	4%	0.1%	100		
					6%	0.1%	110

Table 4: Quicklime Unconfined Compressive Strength Summary

Based upon the evaluation of the eight-day unconfined compressive strength test data and the minimum lime percentage to increase the pH of the soil-lime mixture to 12.4, it is recommended that 5.0% quicklime content be utilized at an application rate of 57.8 lbs/yd² (based on a treatment depth of 14 inches and an in-situ dry unit weight of 110 lbs/ft³) in all subgrade areas that are to be lime stabilized, as identified in Table 6 of Section 5.1.4 in Part I of this report. The application rate will vary depending on the actual in-situ dry unit weight of the soil, which is dependent on the field conditions encountered at the time of construction.

1.2.2 Portland Cement Mix Design Laboratory Testing

Soil-cement one-point Proctor tests were performed at 3%, 5% and 7% Portland cement by dry unit weight and plotted on the ODOT Family of Curves in accordance with ODOT S1015 and AASHTO T272 to determine the maximum dry unit weight and optimum moisture content of each soil-cement mixture. Upon completion of the one-point Proctor tests, soil-cement expansion and unconfined compressive strength (UCS) testing was performed in general accordance with ASTM D2166 and D1633 at 0% (untreated), 3%, 5% and 7% Portland cement. Per ODOT S1120, a minimum average eight-day unconfined compressive strength of 100 psi and a minimum 50-psi increase in unconfined compressive strength from the untreated soil is required for all soil types. The results of the UCS testing are summarized in Table 5.

Complete Mix Design	Soil	Untreated	8-0	day UCS (p	si)	Minimum Required Cement
Testing Sample ID	Туре	(psi)	3% PC	5% PC	7% PC	Content (%)
CT-1	A-1-b	45	125	180	205	4.0
CT-5	A-7-6	45	110	-	165	4.0
CT-7	A-6b	50	115	135	170	4.0
CT-8	A-7-6	45	120	135	155	4.0
CT-9	A-7-6	50	135	150	165	4.0

Table 5: Portland Cement Unconfined Compressive Strength Summary

Based upon the evaluation of the eight-day UCS data, it is recommended that 4.0% Portland cement content be utilized at an application rate of 41.4 lbs/vd² (based on an in-situ dry unit weight of 115 lbs/ft³ and a treatment depth of 12 inches) in all subgrade areas that are to be cement stabilized, as identified in Table 6 of Section 5.1.4 in Part I of this report. The application rate will vary depending on the in-situ dry unit weight of the soil, which is dependent on the field conditions encountered at the time of construction.

Results of the laboratory testing for both types of chemical stabilization are provided in Appendix II-A through Appendix II-E.

PART III: QUICKLIME AND PORTLAND CEMENT STABILIZATION SPECIFICATIONS AND CONSTRUCTABILITY

STABILIZATION SPECIFICATIONS AND CONSTRUCTABILITY

Part III of this report provides general specifications and constructability of the quicklime and Portland cement stabilization construction process and methodology. All subgrade stabilization shall follow the requirements of the ODOT 2013 CMS unless otherwise noted, as described in the following paragraphs:

1.0 GENERAL

Soil stabilization is the long term physical and chemical alteration of soils to enhance their physical and engineering properties. Stabilization of in place soils by incorporating available additives can increase the shear strength of a soil and/or control the shrink/swell properties of a soil, thus improving the load bearing capacity of a subgrade to support pavements.

1.1 **Materials**

Quicklime used shall meet the requirements of ASTM C977. Portland cement used shall meet requirements of ASTM C150 Type I.

1.2 Special Equipment

Spreaders/Distributors – Spreaders or distributors utilized to apply the chemical being used for soil stabilization shall be cyclone or screw type. Dumping material on site and using a blade to spread the material will not be accepted. The spreaders or distributors utilized shall be able to demonstrate a consistent and accurate application rate, as well as dust control during application.

Mixing Equipment – Only self-propelled, high powered rotary mixers capable of mixing to a minimum depth of 12 inches should be used. The cutting drum should be fitted with cutting teeth capable of trimming earth, aggregate and bituminous mixtures, and so designed that they may be accurately adjusted vertically and held in place. The machine shall not weight less than 25,000 lbs and shall have such strength and rigidity that it will not develop a center deflection of more than 1/8-inch. Disc harrows, bucket teeth and other equipment that does not meet the above requirements are not recommended to be used for soil stabilization.

2.0 CONSTRUCTION REQUIREMENTS

2.1 Chemical Selection and Proportioning

Refer to Part II of this report for the percentages of quicklime and Portland cement required and the recommended application rates.

2.2 Preparation of Subgrade

The area to be treated shall be shaped and graded to the proper grade and cross section so that when the subgrade is mixed with the specified Portland cement and water content and recompacted to the required density, the final subgrade elevation as shown in the plans or as directed by the engineer can be achieved. This may require that, prior to soil stabilization construction operations, the subgrade be graded to minus 1/10 of a foot or lower from plan subgrade. All vegetation and other deleterious material shall be removed from within the limits of the area to be treated. If slurry is used, the area should be scarified prior to spreading the slurry to prevent run off.

No material should be mixed with frozen soil. Soil stabilization construction operations should be done when the air temperature is 35°F or above. The area of stabilized subgrade constructed shall be limited to that which can be covered by the succeeding pavement layer during the same construction season.

As noted in Part I of the report, shallow bedrock is present along portions of the project alignment where high SPT blow counts and auger refusal was encountered. The stabilization contractor should use caution when operating in the areas identified to avoid damage to the mixing equipment.

2.3 Material Spreading

The specified quantity of material shall be distributed evenly over the surface of the soil using spreading/distributing equipment that meets the requirements in Section 1.2 of this specification. Dumping material on site and using a grading blade to spread the material is not an acceptable spreading method. Application rate should be determined by percent dry weight of soil and inspection of the application rate should be based on the weight of chemical applied per square yard.

2.4 Water Addition

Proper hydration during construction is paramount to the performance of the stabilized layer. Soil types, in-situ moisture content, mixing depth and the chemical being used are all factors that should be considered in determining the amount of water to add during soil stabilization construction operations. Water may be spread using a water truck

operating directly on the subgrade, or it may be injected directly into the mixing drum of the rotary mixer during the mixing operation.

The chemical, soil and water should be thoroughly mixed and blended to the full depth of treatment using mixing equipment set forth in the Section 1.2 of this specification to achieve a homogenous mixture. All chemicals and soils may require different mixing patterns and techniques in order to achieve optimal results.

2.5 Compaction

When all of the above mixing, gradation and moisture requirements are satisfactorily completed, compaction of the subgrade shall be performed. Prior to the beginning of compaction, the mixture shall be in a loose condition for its full depth and width. The final mixture shall be uniformly compacted until a dry density of not less than 98 percent of the maximum dry density and 1 to 2 percent above the optimum moisture content of the soil-cement mixture is achieved. The project engineer will obtain the maximum dry density for acceptance by using the Ohio Typical Moisture Density Curves. Field density of the compacted material will be determined by nuclear method in the direct transmission mode (ASTM D 6938).

2.6 Finishing and Curing

The treated area should be shaped to the required lines, grades and cross sections and final compaction, by way of smooth drum roller weighing at least 10 tons, and should continue until uniform and adequate compaction is obtained. The surface should be maintained in a moist condition during the curing period by means of sprinkling water. Finished portions of the stabilized subgrade that are traveled on by equipment used in constructing an adjoining section shall be protected in such a manner as to prevent equipment from marring or damaging completed work.

The curing period should be determined by the project engineer based on strength gain of the chemically stabilized subgrade. Typical curing periods for soil stabilization range from 1 to 7 days after final compaction. During the curing period, no traffic shall be permitted on the completed work beyond that required for maintaining moisture for curing. The length of the curing period will depend on the acceptance of the stabilized soil subgrade. The acceptance of the stabilized soil subgrade will be evaluated after 72 hours of curing. Depending on the acceptance of the stabilized soil subgrade, additional curing may be required.

Sufficient protection from freezing shall be provided for the chemically stabilized material for a minimum of seven (7) days following construction or as approved by the engineer.

2.7 Quality Control / Quality Acceptance

A construction materials engineering technician shall observe the stabilization operations and perform related construction materials testing throughout construction. During guicklime or cement stabilization operations, the technician will observe, calculate and document the application rate (in lbs/yd²) to verify the minimum quicklime or cement percentage is being applied.

During compaction of the soil stabilized subgrade, the technician shall perform compaction testing per ODOT SS 1015 Compaction Testing of Unbound Materials. The required compaction for the chemically stabilized soil mixture is stated in Section 2.5 of this specification. Throughout compaction of the chemically stabilized subgrade, the technician shall measure the treatment depth by hand-augering a hole through the treated subgrade and applying phenolphthalein to the side of the hand-augered hole to check for the presence of quicklime or cement. Phenolphthalein will turn the soilguicklime or soil-cement mixtures purple. A moisture content correction factor will need to be determined during the first day of compaction of the chemically stabilized soil subgrade in order to offset the moisture content reading from the nuclear gauge. The addition of guicklime or Portland cement to soil can cause higher than normal readings with a nuclear density gauge, which needs to be corrected based on laboratory moisture content results performed in conjunction with nuclear density gauge moisture content readings.

Acceptance of the quicklime or cement stabilized soil subgrade shall be performed 72 hours after final compaction. An automatic dynamic cone penetrometer (ADCP) shall be used as the initial acceptance test for the cement stabilized soil subgrade. The ADCP will measure the penetration rate (PR) in mm/blow for the chemically stabilized soil subgrade through the entire treatment depth and into the underlying untreated subgrade. The PR throughout the chemically stabilized soil subgrade must average 8.0 mm/blow for the entire depth of stabilized subgrade at every 200 linear feet of roadway. If the average PR of the chemically stabilized soil subgrade is below 8.0 mm/blow, then the contractor can proceed with construction of the pavement structure. If the average PR of the chemically stabilized soil subgrade is above 8.0 mm/blow, then the chemically stabilized soil subgrade must continue to cure for three (3) additional days, at which time the subgrade shall be proof rolled in accordance with ODOT Item 204.

3.0 CONSTRUCTABILITY AND ACCESSIBILIITY REVIEW

Rii can provide a formal constructability and accessibility review once the plans and specifications have been completed.

LIMITATIONS OF STUDY

The recommendations and mix designs presented in this report are predicated upon construction monitoring and testing by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and monitoring during construction are considered necessary to assure an adequate pavement system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were performed. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the pavement or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or exploration for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I-A

STATE GEOLOGY

Recommended citation: Ohio Division of Geological Survey, 1998, Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-size map with text, 2 p., scale 1:2,100.00.

.....

STATE OF OHIO Bob Taft, Governor DEPARTMENT OF NATURAL RESOURCES Samuel W. Speck, Director DIVISION OF GEOLOGICAL SURVEY Thomas M. Berg, Chief

N-14-020(2) OTIC Pavement Replacement MP 216.25 to MP 221.0 Bedrock Geology and Topography

VICINITY MAP AND BORING PLAN

APPENDIX I-B

			K
			لركم
	23	ت ق هکی سب کی ا 5+00	
		ng E	Ĵ
PROJECT NO. # N-14-020(2) CALE: 1"=200'	DRAWN RRM REVIEWED BRT	Rij	
	11-28-14	INTERNATIONAL,	INC.

DESCRIPTION OF SOIL TERMS

APPENDIX I-C

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

Granular Soils - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

Description	Blows per	foot - 3	<u>SPT (N₆₀)</u>
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

Description	Blows per	foot –	<u>SPT (N₆₀)</u>
Very Soft	Below		2
Soft	2	-	4
Medium Stiff	5	-	8
Stiff	9	-	15
Very Stiff	16	-	30
Hard	Over		30

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	action	USCS Size	ODOT Size
Boulders	5	Larger than 12"	Larger than 12"
Cobbles		12" to 3"	12" to 3"
Gravel	coarse	3" to ¾"	3" to ¾"
	fine	³ ⁄ ₄ " to 4.75 mm (³ ⁄ ₄ " to #4 Sieve)	³ / ₄ " to 2.0 mm (³ / ₄ " to #10 Sieve)
Sand	coarse	4.75 mm to 2.0 mm (#4 to #10 Sieve)	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	medium	2.0 mm to 0.42 mm (#10 to #40 Sieve)	-
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)	0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm	Smaller than 0.005 mm

Modifiers of Components - Modifiers of components are as follows:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS
Dry	0% to 10%
Damp	>2% below Plastic Limit
Moist	2% below to 2% above Plastic Limit
Very Moist	>2% above Plastic Limit
Wet	³ Liquid Limit

Organic Content – The following terms are used to describe organic soils:

Term	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe bedrock hardness:

Term		Blows per	r foot – S	SPT (N)
Very Soft		Below		50
Soft		50/5"	_	50/6"
Medium Hard		50/3"	_	50/4"
Hard		50/1"	_	50/2"
Very Hard	50/0"			

	Un	confin	ed	
Co	mp	ressio	n (†	tsf)
	-	UCS	≤	0.25
0.25	<	UCS	≤	0.5
0.5	<	UCS	≤	1.0
1.0	<	UCS	≤	2.0
2.0	<	UCS	≤	4.0
		UCS	>	4.0

Well below Plastic Limit Below Plastic Limit Above PL to 3% below LL

Range - ODOT

3% below LL to above LL

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classife AASHTO	OHIO	LL _O /LL x 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
°000 °000 °000	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
0.0.0	Gravel and/or Stone Fragments with Sand	Α-	1-Ь		50 Max.	25 Max.		6 Max.	0	
F.S.	Fine Sand	A	-3		51 Min.	- 10 Max.	NON-P	LASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
0000 0000 00000	Gravel and/or Stone Fragments with Sand and Silt	A- A-	2-4 2-5			35 Max.	40 Max. 41 Min	10 Max.	0	
	Gravel and/or Stone Fragments with Sand, Silt and Clay	-A A-	2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.	D)	36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{c} + + + + + \\ + + + + + \\ + + + + + \\ + + + + \end{array} $	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	- A-	7-5	76 Min.		36 Min.	41 Min.	≨LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-85	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MAT	FERIAL	CLASS	SIFIED BY	VISUAL	INSPEC	TION			
	Sod and Topsoil Pavement or Base	Uncon Fill (D	trolled escribe	1		Bouldery	/ Zone		Pea W-V L-L	at, S-Sedimentary Woody F-Fibrous .oamy & etc

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX I-D

BORING LOGS:

B-44-01 through B-44-27

BORING LOGS

Definitions of Abbreviations

- AS = Auger sample
- GI = Group index as determined from the Ohio Department of Transportation classification system
- HP = Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

$$\frac{\sum \text{ segments equal to or longer than 4.0 inches}}{\text{core run length}} x 100$$

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60} values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Gravel
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

QUENT OTC SMARING REPUIL/OGGER BIL/JP HAMBER ALTOMATE CLEB Mer. 28.3 E-4470 START 37.410 BIL BIL/JP HAMBER ALTOMATE BORNELIS METTOO SUBJECT		PROJECT: PAV. REC	C. PROG MP 216.1-221.25	DRILLING FIRM /	OPERATOR	:RII	/ T.F.	DRI	LL RIG	: MOE	BILE B-53 (SN 624	400)	STAT	ION /	OFFSE	т:	541+	+48 / 51	.2' RT	EXPLO	RATION ID
OTF No. TH LADDY DELLING MITHOD 45 - CA CALENTINI NATE ELEVITION SEED No. FLORE VALUE SEED NO.		CLIENT:	OTIC	SAMPLING FIRM	/ LOGGER:	RII	/ J.P.	HAN	MMER:		AUTOMA	ATIC		ALIG	NMEN	IT:	CL I-	80	MP:	216.	34 B-4	4-01
STAFE BUT ALL SAMPLING METHOD SPT DERCY PATIO (54) T77 COORD 44208 B0A, 24100 (11) 10° 1 0.4* ASPHALL (50*) B66.0 DEPTHS SPT No REC SAMPLE HP H I		OTP NO.:	RII NO.: N-14-020(2)	DRILLING METHO	DD:	4.5" - CF	A	CAL	.IBRAT	ION DA	TE:	4/26/13		ELEV	ATIO	N: 9	96.0 (1	MSL)	EOE	3:	7.9 ft.	PAGE
MATERIAL DESCRIPTION ANNOTES ELEV. PROD DEPTHS SPTI ROD Ne. REC SAMPLE IIP (N) CRADATION (%) ATTERBERG N Control Cub s(N) ACK Cub s(N) 0.4' - ASPHALT (5.0') 995.6 0 0.4' 0 0 0.4' 0 0 0.4' 0 0 0.4' 0 0 0 0.4' 0 0 0.4' 0 0 0.4' 0 0 0.4' 0 0 0.4' 0 0 0 0.4' 0		START: 8/19/14	END: 8/19/14	SAMPLING METH	HOD:	SPT		ENE	ERGY F	RATIO (%):	77.7		coo	RD:		54029	96.658	3 N, 241	6901.51	1 E	1 OF 1
AND NOTES Sec. UEPTHS ROD No. (%) ID (%) I	ľ	MATERIA	AL DESCRIPTION	•	ELEV.			SPT/		REC	SAMPLE	HP	G	RAD	ATIO	N (%)	A	TTE	RBER	G	ODOT	BACK
0.4* - ASPHALT (5.0*) 996.6 0.9* - CONCRETE (110*) 994.7 0.6* - SLAG BASE (7.0*) 994.7 STIFF TO VERY STRF. GRAVIEN BROWN TO BROWN SIT AND CLAY, LITTLE 994.1 991.1 991.1 STIFF. BROWNISH GRAV SILT, SOME CLAY, LITTLE 991.1 009.6 991.1 STIFF, MOTTLED BROWN AND GRAY SILT AND CLAY, LITTLE COARSE TO FINE GRAVEL, WET. 991.1 091.6 991.1 991.1 991.1 991.1 991.1 091.6 991.1 991.1 991.1 091.2 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 992.1 992		Al	ND NOTES		996.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL I	LI	PL PI	wc	CLASS (GI)	FILL
0.9" - CONCRETE (11.0") 994.1 STIFF TO VERY STEF, GRAVISH BROWN TO BROWN SIT AND CLAY, LITTLE COARSE TO FINE SAND. 994.1 1	ľ	0.4' - ASPHALT (5.0")		\times	005.0																	
06' - SLAG BASE (7.0') 994.7. STIFF TO VERY STIFF, GRAYISH BROWN TO BROWN SITE TO VERY STIFF, GRAYISH BROWN TO BROWN STIFF TO VERY STIFF, GRAYISH BROWN TO BROWN STIFF, BROWNISH GRAY SULT, SOME CLAY, LITTLE 091.1 994.7 994.7 994.7 994.7 STIFF, BROWNISH GRAY SULT, SOME CLAY, LITTLE 999.6 999.6 STIFF, BROWNISH GRAY SULT, SOME CLAY, LITTLE 999.6 999.6 999.7 999.7 999.7 999.6 999.6 999.6 999.7 999.6 999.6 999.6 999.6 999.7 999.6 999.6 999.6 999.6 999.6 999.7 999.6 999.6 999.7 999.7 <tr< td=""><td></td><td>0.0' CONCRETE (11.0")</td><td></td><td></td><td>995.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		0.0' CONCRETE (11.0")			995.6																	
0.6' - SLAG BASE (7.0') 994.7 STIFF TO VERY STIFF. GRAVISH BROWN TO BROWN IRACE FINE GRAVEL, DAMP. 994.1 STIFF TO VERY STIFF. GRAVISH BROWN TO BROWN IRACE FINE GRAVEL, DAMP. 994.1 994.1 994.1 STIFF. BROWNISH GRAV SLT, SOME CLAY, LITTLE 991.1 991.1 991.1 STIFF. BROWNISH GRAV SLT, SOME CLAY, LITTLE 991.1 993.6 993.6 STIFF. BROWNISH GRAV SLT, SOME CLAY, LITTLE 991.1 993.6 993.6 STIFF. BROWNISH GRAV SLT, SOME CLAY, LITTLE 993.6 993.6 993.6 STIFF. MOTILED BROWN AND GRAVEL, WET. 993.6 993.6 993.6 DITUE GRAVEL DROWN AND GRAVEL, WET. 993.6 993.6 NUTLE: 993.6 DITUE BROWN AND GRAVEL 993.6 993.6 DITUE GROWNATER NOT ENCOUNT AND GRAVEL 993.6 993.6 DITUE GROWNATER NOT ENCOUNTERED DURING DRUME 993.6 993.6 DITUE GROWNATER NOT ENCOUNTERED DURING DRUME		0.9 - CONCRETE (11.0)																				
0.8' - SLAG BASE (7.0') 99.1.1 STIFF TO VERY STIFF, GRAVISH BROWN TO BROWN 99.1.1 99.1 99.1.1 1TACE FINE GRAVEL, DAMP. 99.1.1 99.1 99.1.1							- 1 -															
00-5-SAG BASE (7) 994.1 STIFF TO VERY STIFF, GRAVISH BROWN TO BROWN 994.1 STIF AD CE PINE GRAVEL, DAMP. 994.1 STIFF, BROWNISH GRAY SLIT, SOME CLAY, LITTLE 991.1 STIFF, MOTTLED BROWN AND GRAY SLIT, SOME CLAY, LITTLE 991.1 STIFF, MOTTLED BROWN AND GRAY SLIT, SOME CLAY, LITTLE 991.1 STIFF, MOTTLED BROWN AND GRAY SLIT, SOME CLAY, LITTLE 991.1 BROWN SH GRAY SLIT, SOME CLAY, LITTLE 991.1 STIFF, MOTTLED BROWN AND GRAY SLIT, SOME CLAY, LITTLE 991.1 BROWN SH GRAY SLIT, SOME CLAY, LITTLE 988.1 BROWN SH GRAY	ŀ			X	994.7																	
STIFF TO VERY STIFF. GRAVISH BROWN TO BROWN 994.1 ITACE FINE GRAVEL, DAMP. 991.1 991.1 991.1 STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 991.6 991.1 STIFF. MOTTLED BROWN AND GRAY SILT. SOME CLAY, LITTLE 991.1 991.6 991.1 991.7 991.1 991.1 991.1		0.6 - SLAG BASE (7.0")																				
SITE F. DUYLEY SITE: GRAVEL, DAMP. 17ALCE FINE GRAVEL, DAMP. 991.1 STIFF, BROWNISH GRAY SILT. SOME CLAY, LITTLE 000000000000000000000000000000000000					994.1																	
TRACE FINE GRAVEL DAMP. 901.1 STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 988.1 6 988.1 6 988.1 60		SHEFTOVERY SHEF, GRA	ARSE TO FINE SAND				2															
3 5 13 33 SS-1 - <td></td> <td>TRACE FINE GRAVEL, DAM</td> <td>P.</td> <td></td> <td></td> <td></td> <td>3</td> <td>3_</td> <td></td>		TRACE FINE GRAVEL, DAM	P.				3	3_														
STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 991.1 991.1 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY. 999.6 998.1 998.1 998.1 998.1 FOR 998.1								5	13	33	SS-1	-	-	-	-	-	-	-	- -	17	A-6a (V)	
STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, 991.1 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, 999.6 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, 999.6 Baye 999.1 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, 999.6 Baye 999.6 Baye 999.6 Baye 999.6 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, Baye 999.6 Baye 999.1 Baye 999.6 Baye 999.7 Baye 999.7 Baye 999.7 Baye 999.8 Baye 999.7 Baye 999.7 Baye 999.7 Baye 999.7 Baye 9999.7 Baye<							- 3 -	Ŭ														
STIFF, BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 991.1 991																						
STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 991.1 999.6 STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 999.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 989.6 988.1 988.1 988.1 50 988.1 50 988.1 50 988.1 50 988.1 50 988.1 50 988.1 50 988.1 50 988.1 50 988.1	GPJ																					
STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE 991.1 991.1 991.1 991.1 1 1 1 A-6a (9) 3 3 5 6 SS-2 3.25 5 8 10 42 35 32 19 13 16 A-6a (9) 3 3 5 6 SS-2 3.25 5 8 10 42 35 32 19 13 16 A-6a (9) 3 3 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 7 7 7 4 4 5 12 100 SS-4 2.00 - - -	(2)						_ 4 _ 2	2														
STIFF. BROWNNISH GRAY SILT, SOME CLAY, LITTLE 991.1 9	-020							3	8	56	SS-2	3.25	5	8	10	42	35 3	32 '	19 13	3 16	A-6a (9)	7676
STIFF. BROWNISH GRAY SILT. SOME CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, WET. 991.1 989.6 989.6 STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. 989.6 989.6 989.1 998.1 988.1 908.1 908.1 FOR STUFF. MOTTLED BROWN AND GRAY SILT AND CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. 989.6 908.1 908.1 908.1 908.1	۱-14							5														
Striff: BROWNISH GRAY SILT, SOME CLAY, LITTLE 989.6 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 989.6 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 989.6 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 989.6 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 989.6 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 989.1 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 988.1 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 988.1 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 988.1 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 988.1 Striff: MOTTLED BROWN AND GRAY SILT AND CLAY, 988.1 Striff: GROWN AND GRAY SILT AND CLAY, 988.1 Strift: GROWN AND GRAY SILT AND CLAY, 988.1 Strift: GROWN AND GRAY, 988.1 <tr< td=""><td>14\N</td><td></td><td></td><td></td><td>991.1</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1>112</td></tr<>	14\N				991.1		_															1>112
COARSE TO FINE SAND, TRACE FINE GRAVEL, WEI. STIFF, MOTTLED BROWN AND GRAY SILT AND CLAY. LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, 989.1 989.1 FOR END FINE SAND, TRACE FINE GRAVEL, 989.1 989.1	S\20	STIFF, BROWNISH GRAY S	ILT, SOME CLAY, LITTI		+		- 5 -															JLV JL
STIFF. MOTTLED BROWN AND GRAY SILT AND CLAY. UITLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. 998.1 EOB COTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	ECT:	COARSE TO FINE SAND, TH	RACE FINE GRAVEL, M	VEI. ++++	+		2	2														< V < V < V < V < V < V < V < V < V < V
STIFF, MOTTLED BROWN AND GRAY SILT AND CLAY. INTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. 988.1 EOB 000000000000000000000000000000000000	SOJE			+++++++++++++++++++++++++++++++++++++++	+			3	8	72	SS-3	2.00	5	5	10	50	30 3	31 2	22 9	29	A-4b (8)	72 72
STIFF, MOTTLED BROWN AND GRAY SILT AND CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, 989.6 -	8\PF			+++++++++++++++++++++++++++++++++++++++			- 6 -	ა														JLV JL
TIFF, MOTILED BROWN AND GRAY SILT AND CLAY. LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. 988.1 EOB 0988.1 EOB 000000000000000000000000000000000000	١:\G			+++++++++++++++++++++++++++++++++++++++	989.6																	1>11>
	<u></u> -е	STIFF, MOTTLED BROWN A	ND GRAY SILT AND C	LAY,																		7676
	14:29	DAMP	AND, TRACE FINE GRA	AVEL,			_ 7 _ 4	1														$ <, \vee <, \cdot$
	/15 '						, ,	4_	12	100	SS-4	2.00	-	-	-	-	-	-		17	A-6a (V)	12 72
988.1 EOB	1/12							5														JLV JL
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	÷				988.1	FOR																1>11>
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	9					EOB																
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	DOT																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	НО																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	ц																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	NPI																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	'UR																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	<u>1-9</u>																					
	GLO																					
Roundwater Not Encountered During Drilling	RINO																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	BO																					
	DOT																					
	10 0																					
	STI																					
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING	2013																					
	``	NOTES: GROUNDWATER NOT	ENCOUNTERED DURING D	RILLING																		

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

ſ	PI PI	ROJECT:	PAV. REC.	PROG M	P 216.1-221.25			R:R	II / T.F.	DR	ILL RIG	: MO	BILE B-53 (SN 624	400)	STATI	ON / C	FFSET	:	550+7	7 / 50.8	'LT		RATION ID
	$(\mathbf{K}_{11})^{u}$		71 14 09		N 14 020(2)		FIRM / LOGGER:	R	I / J.P.					4/10/12				10	CL I-8		_ MP: _	216.5	1 <u> </u>	PAGE
		ΓΡ ΝΟ ΓΛΦΤ·	8/13/14		N-14-020(2)			4.5 - C	- -				0/_)·	4/20/13			אוטוא. חי	10	00.3 (IV	10L) 1807 N	_ EUB.	01 7/9	E	1 OF 1
ŀ	5	ANT				SAMELING		0F 1			LKGTP							(0/)	009010 AT			01.740	L	DAOK
			IVIA I ERIA	L DESCR	PTION		ELEV.	DEPT	THS	BOD	N ₆₀		SAMPLE	(tef)				(%)				we	ODOT CLASS (GI)	BACK
ŀ	0.5' - ASPH	ALT (6 (ינא. ו"נ	DINOTES			XXX			RQD		(70)		(131)	GI	0.5	13	31 0	,L LL	. FL		VVC	()	
	0.0 / 10/ 11	(0.0	,				999.8																	
	1.0' - CONC	RETE (12.0")						- ·	1														
									- 1 -	_														
	0.4' - SLAG	BASE (5.0")																					
						TV	××× 998.4		2										_					
	CLAY, LITT	LE COAI	RSE TO F	INE SAND	D, TRACE FI	NE																		
	GRAVEL, D	AMP TO	MOIST.		, -				-	2	Q	44	SS 1	1 00	5	7	11	10 2	7 22	17	16	16	A 65 (10)	
										4		44	33-1	1.00	5	'		+0 3	1 33	, i <i>i</i>	10	10	A-00 (10)	
									- 3 -															
-									-															
GР																								
20 (2									- 4 -	2	10	56	SS-2	1 00	5	6	12	10 3	7 35	5 17	/ 18	21	A-6h (11)	
4-02										6			002	1.00	Ũ	Ŭ						- ·		1>11>
t-N/t							995.4																	TLV TL
201	VERY STIF	F, MOTT	LED BRO	WN AND	GRAY SILT	(- 5 -															
CTS	CLAY, LITT	LE COAI	RSE TO F	INE SAND	D, TRACE FI	NE				-														1>112
OUE	GRAVEL, D	AMP TO	MOIST.							5	14	67	SS-3	2.25	-	-	-		. .	-	-	22	A-6b (V)	TLV TL
PR									6 -	6														$ < ' \land < '$
:\GI8																								1>112
U - 0									-															TLV TL
14:29									_ 7 _	4														$ <, \vee <, $
/15	-ROOT FIE	BERS PF	RESENT I	NSS-4					· '	9	23	67	SS-4	3.00	-	-	-	-	- -	-	-	15	A-6b (V)	7272
1/12									-	9														7 LV 7 L
Ь.							992.4	-FOB																1 2 1 2 2
T.GI								LOD																
B																								
HO-																								
ЧЧ																								
NP																								
IJ-																								
LOG																								
NG																								
30 RI																								
OTE																								
OD O																								
STD																								
2013																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

	PROJECT: PAV. REC. PROG MP 216.1-221.25 DRILLING F	IRM / OPERATOR	::		DRILL RIG	G: MC	BILE B-53 ((SN 6244	00)	STATI	ON/	OFFSE	ET:	55	8+33 /	48.1'	RT	EXPLOR	ATION ID
	Rii) CLIENT: OTIC SAMPLING	FIRM / LOGGER:	RII / J.P.		HAMMER	:	AUTOM	ATIC		ALIGN	IMEN	T:	CL	I-80		MP: _	216.6	6 B-4	4-03
	TTP NO.:	IETHOD:	4.5" - CFA		CALIBRA	FION D/	ATE:	4/26/13		ELEV	ATION	N: <u>1</u>	002.5	i (MSI	_) E	EOB:		7.9 ft.	PAGE
	START: <u>8/19/14</u> END: <u>8/19/14</u> SAMPLING	Method:	SPT		ENERGY	RATIO	(%):	77.7		COOF	RD: _		5392	276.6	53 N, 2	24182	42.326	E	1 OF 1
	MATERIAL DESCRIPTION	ELEV.	DEPTHS	SP	T/ N	REC	SAMPLE	HP	G	RAD	ATIO	N (%)) .	ATT	ERBE	ERG		ODOT	BACK
	AND NOTES	1002.5	DEI IIIG	RG	2D 160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
	0.4' - ASPHALT (5.0")	1002.1																	
ľ	0.9' - CONCRETE (11.0")		-	-															
		1001 2	- 1 -																
ľ	0.6' - SLAG BASE (7.0")			_															
		1000 6																	
ľ	VERY STIFF, MOTTLED BROWN AND GRAY SILTY		- 2 -	-															
	CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE			1															
	GRAVEL, MOIST.		-	3	8	89	SS-1	2.50	5	6	12	42	35	38	19	19	23	A-6b (12)	
			- 3 -		3													()	
		999 1																	
2	STIFF, GRAY TO BROWN SILT AND CLAY, LITTLE		-																
5. (;	COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.																		
z) (z			- 4 -	3	9	67	SS-2	1.25	1	5	11	47	36	34	19	15	23	A-6a (10)	$\overbrace{\neg}^{\times} L^{\vee} \overbrace{\neg}^{\vee} L^{\vee}$
0-4-0					4					-				-			_	(-)	4>14>
-N/+																			7676
71.07			- 5 -	-															< ,
5																			7272
л Г			-	3	12	94	SS-3	1 50	-	-	_	-	-	_	-	-	22	A-6a (V)	JLV JL
L L L			6		5			1.00										/ 0u (1)	1>1 1<
<u>وام</u>		996 1	- 0 -																1L 1L
2	HARD BROWN SILT AND CLAY LITTLE COARSE TO	990.1	_	-									_						JLV JL
RY.	FINE SAND, TRACE FINE GRAVEL, DAMP.																		4>14>
0			- 7 -	10 1	1 36	67	SS-4	4.5+	_	_	_	-	-	_	_	-	14	A-6a (V)	7676
17				L '	17		00 4	4.01										/ 00 (1)	< , V < ,
		004.6																	7272
פר		/// 994.0	EOB																
5																			
ר יי																			
Z																			
NYN																			
<u>-</u> ځ																			
2 L																			
2 N V																			
5 n																			
ξ																			
5																			
10																			
2013																			
Ì	NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING																		
t	ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 330	LBS CONCRETE;	COMPACTED WITH	THE.	AUGER	SOIL C	UTTINGS												

ſ	PROJECT: PAV. REC. PROG MP 216.1-221.25 DRILLING		RII / T.F.		MOBI	LE B-53 (S	N 62440	0) S		OFFSE	T:	5+17	/ 51.8'	LT	EXPLOR	ATION ID 4-04
	CLIENT:	G METHOD:	4.5" - CEA				110		LIGNIVIEN	NI:	08 5 (N	491.)	_ MP: _	216.8	7 9 ff	PAGE
	START: 8/13/14 END: 8/13/14 SAMPLIN	NG METHOD [.]	SPT		ATIO (%	L. <u>4</u> /	77 7			IN	53868	7 089 I	_ LOB. V 24191	79 155	F	1 OF 1
ŀ							нр			N (%)		TTER	RERG			PACK
	AND NOTES	008 5	DEPTHS R	QD N ₆₀	(%)		(tsf)		CS FS	SI				wc	CLASS (GI)	FILL
ľ	0.4' - ASPHALT (5.0")				(, -)		(101)				-					******
	0.9' - CONCRETE (11.0")	998.1														
	0.6' - SLAG BASE (7.0")	996.6														
	HARD, BROWN SILT AND CLAY , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP.		- 2 - - 3 - 3 -	6 16 6	67	SS-1	4.50	3	4 11	43	39 3	32 17	7 15	15	A-6a (10)	
14\N-14-020 (2).GPJ			49 	9 26 11	78	SS-2	4.5+	8	5 10	42	35 3	30 17	7 13	16	A-6a (9)	
:\GI8\PROJECTS\20		992.1	- 5 - 13 - 6 -	1 27 10	100	SS-3	4.5+	-		-	-		-	14	A-6a (V)	
F - 1/12/15 14:29 - U	STIFF, BROWN SILT , SOME CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST. -SANDSTONE FRAGMENTS PRESENT IN SS-4	**** **** **** **** **** **** ****	- 7 - 11 - 7	9 21 7	33	SS-4	2.00	-		-	-		-	22	A-4b (V)	
STD ODOT BORING LOG-TURNPIKE - OH DOT.GI																

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 440 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

		PROJEC	T: PAV. REC	. PROG N	IP 216.1-221.2	5 DRILLING F	IRM / OPERATOR:	RI	I / T.F.	DRI	ILL RIG	: MO	BILE B-53 (SN 624	400)	STATIC	N / OFI	SET:	1	4+46 /	52.1' I	RT	EXPLO	RATION ID
	Ri	CLIENT:		OTIC		SAMPLING	FIRM / LOGGER:	RII	/ J.P.	HAN	MMER:		AUTOMA	ATIC		ALIGN	IENT:	С	L I-80	[MP:	217.0	4 D-4	4-05
		OTP NO.	: 71-14-08	_ RII NO.:	N-14-020(2)			4.5" - CF	A		LIBRAT	ION DA	.TE:	4/26/13		ELEVA		1003	.9 (MS	L) [EOB:	7	'.8 ft.	
L		START:	8/19/14	_ END:	8/19/14	SAMPLING	METHOD:	SPT		ENE	ERGY F	ratio (%):	77.7		COOR):	53	8040.6	65 N, 1	24198	54.420	E	TOFT
			MATERIA	L DESCR	IPTION		ELEV.	DEPT	нs	SPT/	Nco	REC	SAMPLE	HP	G	RADA	ΓΙΟΝ (%)	ATT	ERBE	ERG		ODOT	BACK
L			Al	ID NOTES	5		1003.9			RQD	60	(%)	ID	(tsf)	GR	CS F	'S SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
	0.3' - /	ASPHALI (4.0")				1003.6																	
	0.8' - (CONCRETE	(10.0")																					
ŀ	0 7' - 9		(8.0")				1002.0		- 1 -															
	0.7		. (0.0)																					
							1002.1																	
), BROWN S		AY, LITTI		ТО			- 2 -															
				WILL, D						3														
										5 7	16	61	SS-1	4.50	6	5 1	1 43	35	30	17	13	15	A-6a (9)	
									- 3 -															
⊢							1000.6		_															
Гď	SAND), BROWN S) TRACE FI	NE GRAVE		COARSE TO	FINE																		
(2).G	0/110	, 11010211		L, D/ Will .						4 _	10		~~ ~								10			
020									4	5 7	16	/2	SS-2	4.50	4	4	3 34	50	38	20	18	1/	A-6b (11)	JLV JL
-14-(1>1 1> < V <
14/N							999.1		-									_						7676
\$\201	COAR	STIFF TO T	FARD, BRO F SAND TR	ACF FINE	AND CLAY, I F GRAVEL	LITTLE DAMP			- 5 -															JLV JL
CTS	00/11		_ 0/ 110, 11		_ 0101022,2					8	04	~	~~~~	4.50										1>1-1>
EOJE										10 6	21	61	55-3	4.50	-	-	- -	-	-	-	-	14	A-6a (V)	7676
3\PR									- 6 -	Ŭ														JLV JL
:/GI8									-									_						4>14
∩-6																								7676
14:29									_ 7 _	5	10	100	00.4	1.00								45	A 0 - 0.0	< V <
/15 .									'	[′] 7	18	100	55-4	4.00	-	-	- -	-	-	-	-	15	A-6a (V)	1272
1/12																								TLV TL
Ь							996.1	-EOB																1>1/1>
T.GD																								
B																								
HO-																								
Ϋ́																								
RNPI																								
-TU																								
90																								
NGL																								
OR																								
DT B																								
дo																								
Ê																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 440 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

	F	PROJECT:	PAV. REC.	PROG M	IP 216.1-221.25	DRILLING FIRM /	OPERATO	R: RI	II / T.F.	DRI	LL RIG	: <u>M</u> O	BILE B-53 (SN 624	400)	STAT	FION /	OFFS	SET:	2	3+75 /	51.0'	LT	EXPLO	RATION ID
	Rii)	CLIENT:		OTIC		SAMPLING FIRM	/ LOGGER	RII	/ J.P.	HAN	/MER:		AUTOMA	ATIC		ALIG	NMEN	NT:	CL	I-80	N	/IP: _	217.2	2 B-4	4-06
		OTP NO.:	71-14-08	RII NO.:	N-14-020(2)	DRILLING METHO	DD:	4.5" - Cl	FA	CAL	IBRAT	ION DA	ATE:4	4/26/13		ELE\	/ATIO	N:	1013.2	2 (MSI	L) E	OB:	7	7.9 ft.	PAGE
	9	START:	8/13/14	_ END:	8/13/14	SAMPLING METH	IOD:	SPT		ENE	RGY F	RATIO ((%):	77.7		C00	RD:		537	558.7	97 N, 2	24206	55.340	E	TOFT
			MATERIA	L DESCR	RIPTION		ELEV.	DEPT	тнs	SPT/	Neo	REC	SAMPLE	HP	Ģ	RAD	ATIC	ON (%)	ATT	ERBE	RG		ODOT	BACK
				D NOTES	5		1013.2		-	RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
	0.4 - ASPI	HALI (5.	0)				1012.8																		
	0.8' - CON	ICRETE ((10.0")				*																		
							1010.0		_ 1 _																
ŀ			(8.0")				1012.0		1																
	0.7 - SLAC	J DAGL ((0.0)																						
							1011.3																		
	VERY STI	FF, BROV	VN SILT A TI E EINE		, SOME COA	RSE			- 2 -																
		DAND, LII			., DAMI .					5															
										4 5	12	44	SS-1	3.75	16	10	16	34	24	33	19	14	18	A-6a (6)	
	-SLAG FF	RAGMEN	TS PRESE	INT IN SS	5-1				- 3 -																
						. ///	1009.8																		
GP.	CLAY IIT	TI E COA	RSF TO F	WN AND INF SANI	D TRACE FIL																				
2)	GRAVEL, I	DAMP.			2,	-			- 4 -	5_		50	00.0	0.05				20	10	0.5	47	10	47		
1-02(56	14	56	55-2	3.25	4	6	11	39	40	35	17	18	17	A-60 (11)	72772
N-1∠																									JLV JL
014\									- 5 -																4>14>
TS/2																									7676
ЪП										6	21	67	66.2	2 50									17	A 66 () ()	JLV JL
RO										8	21	07	33-3	2.50	-	-	-	-	-	-	-	-	17	A-00 (V)	1>11
318/F							1006.0		- 6 -																7676
⊇	VERY STI	FF MOTI			GRAY SILT		1000.0			-															1 L 1 1 L
:30	CLAY, SO	ME COAF	RE TO FIN	E SAND,	TRACE FINE																				1>11>
5 14	GRAVEL, I	DAMP.					1		- 7 -	7	25	89	SS-4	4 00	_	_	_	_	-	-	-	-	14	A-6a (V)	7676
12/1										1 1	20			4.00									14	/(00(1))	< V < V
-							1005 3																		1>112
GD							1005.5	EOB		I I			I												
D D																									
UH I																									
Ξ																									
ХIЧХ																									
URI																									
ģ																									
Ц С																									
NIN																									
ΤBC																									
g																									
ě																									
13 S																									
20																									

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 495 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

PROJECT: PAV. REC. PROG MP 216.1-221.25 DRILLING FIRM / OPE	ERATOR:	RII / T.F.	DRI	ILL RIG	: MOE	BILE B-53 (SN 624	400)	STATI	ON / O	FSET:	3	3+04 /	52.7'	RT	EXPLO	RATION ID
CLIENT:OTICSAMPLING FIRM / LO	GGER:	RII / J.P.	HAN	MMER:		AUTOMA	ATIC		ALIGN	IMENT:	C	L I-80		MP: _	217.3	9 B-	14-07
OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u> DRILLING METHOD:		4.5" - CFA	CAL	LIBRAT	ION DA	TE:	4/26/13		ELEVA	ATION:	1017	.9 (MS	SL)	EOB:		7.7 ft.	PAGE
START: <u>8/19/14</u> END: <u>8/19/14</u> SAMPLING METHOD:		SPT	ENE	ERGY F	ratio (°	%):	77.7		COOF	RD:	53	6912.8	572 N,	24213	30.757	E	1 OF 1
MATERIAL DESCRIPTION EL	LEV.	DEPTHS	SPT/	N	REC	SAMPLE	HP	Ċ	RADA	ATION	(%)	ATT	ERB	ERG		ODOT	BACK
AND NOTES 10	017.9	DEFINS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS S	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.2' - ASPHALT (2.0"))17.7																
0.9' - CONCRETE (11.0")																	
10	016.8	- 1 -															
0.6' - SLAG BASE (7.0")																	
10	016.2																
VERY STIFF, BROWN SILT AND CLAY , LITTLE COARSE		_ 2 _															
TO FINE SAND, LITTLE FINE GRAVEL, DAMP.		2	4														
			7	19	50	SS-1	3.50	19	6	11 3	7 27	29	18	11	12	A-6a (6)	
			8														
10	014.7	- 3 -															
VERY STIFF, BROWN CLAY, SOME SILT, SOME																	
COARSE TO FINE SAND, SOME FINE GRVAEL, DAMP.			6														
		- 4 -	7	19	33	SS-2	-	28	18	13 2	5 16	43	29	14	14	A-7-6 (2)	
		· · ·	8													()	$\vec{\gamma} L^{\vee} \vec{\gamma} L^{\vee}$
																	<. V <.
																	12112
		- 5 -															JLV JL
			8	22	22	66.2									10	A 7 6 () /)	<1>1<
			9 9	23	33	33-3	-	-	-	-	- -	-	-	-	19	A-7-0 (V)	$\frac{1}{7}L^{V}\frac{1}{7}L^{V}$
		6 -	_														< V < .
		0															72772
																	JLV JL
			14														<1 >1 < 1
		- 7 -	11 7	23	33	SS-4	-	-	-	-	- -	-	-	-	23	A-7-6 (V)	$\vec{\gamma} L^{\vee} \vec{\gamma} L^{\vee}$
			'														$ <, \vee <, $
10	010.2	-FOB															7 2 7 2
		LOD															
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING																	
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONC	CRETE; C	COMPACTED WITH T	THE AUC	GER S		TTINGS											

2013 STD ODOT BORING LOG-TURNPIKE - OH DOT.GDT - 1/12/15 14:30 - U.\GI8IPROJECTS/2014IN-14-020 (2).GPJ

	PROJECT:	PROJECT: <u>PAV. REC. PROG MP 216.1-221.25</u> DRILLING FIRM / OPERATO CLIENT:OTICSAMPLING FIRM / LOGGER		:		DF HA	RILL RIG	MOBILE B-53 (SN 624 AUTOMATIC			400)	STATI	ON / C MENT	FFSET:	4 2L I-80	/ 2+33 / I	′ 51.6′ MP [.]	LT 217.5		ATION ID 4-08			
	OTP NO.:	71-14-08	RII NO.:	N-14-020(2)	DRILLING M	ETHOD:	4.5" - Cl	FA	CA	LIBRAT	ATION DATE:		4/26/13					9.5 (MS	SL) I	EOB:		7.9 ft.	PAGE
	START:	START: 8/14/14 END: 8/14/14 SAMPLING METHOD:				SPT		EN	NERGY F	Ratio (%):		77.7					36423.2	233 N, I	N, 2422128.748		E	1 OF 1	
		MATERIAL		PTION		ELEV.		DEPTHS S		N ₆₀			HP		GRADATION		l (%)	ATT	ATTERBERG		-	ODOT	BACK
H	0.4' - ASPHALT (5	<u>ANI</u> 0")	DNOTES			<u> </u>			RQD		(%)	ID	(tsr)	GR	CS	FS	SI CL	LL	PL	Ы	wc	02100 (01)	
-	0.8' - CONCRETE ((10.0")				1009.1			_														
	0.7' - SLAG BASE(1007.6			-																		
	HARD, MOTTLED E LITTLE COARSE TO DAMP.	3ROWN AN O FINE SA	id gray Nd, tra(Silty Clay Ce fine Gr	, AVEL,	1006.1		- 2 - - 3 -	3 4	5 13	67	SS-1	4.50	9	5	10	42 34	32	16	16	15	A-6b (10)	
4\N-14-020 (2).GPJ	VERY STIFF TO HA BLACK SILT AND C COARSE TO FINE -SHALE AND SILT SS-2	ARD, DARK S LAY , SOM SAND, DR` STONE FF	(GRAY, E E FINE G Y. RAGMEN ⁻	BROWN ANE RAVEL, SOM TS PRESEN) ΜΕ Γ IN	1004.6		- - 4 -	-6 6 8	18	50	SS-2	4.00	27	16	8 3	31 18	30	18	12	8	A-6a (3)	
CI8/PROJECTS/201	VERY STIFF TO HA BLACK SILTY CLAY TRACE FINE GRAV	ARD, DARK (, LITTLE C /EL, DAMP	GRAY, E COARSE	BROWN ANE TO FINE SAI) ND,			- 5 - - - 6 -	-13 10 1(26	61	SS-3	2.50	-	-	-		-	-	-	14	A-6b (V)	
ıТ - 1/12/15 14:30 - U	-SHALE AND SILT THROUGHOUT	STONE FF	RAGMEN	IS PRESEN	Г	1001.6	500	- 7 -	4 6 Į	14	72	SS-4	4.50	-	-	-		-	-	-	16	A-6b (V)	
STD ODOT BORING LOG-TURNPIKE - OH DOT.G																							

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS

PROJECT: PAV. REC. PROG MP 216.1-221.25 D						DRILLING FIRM /	R:		DR	RILL RIG	: MO	BILE B-53 (STAT	ON/(OFFSET:	5	51+62 /	52.8'	RT	EXPLOR	ATION ID				
Rii	CLIE	INT:		OTIC		SAMPLING FIRM	FIRM / LOGGER: RII / J.P. METHOD: 4.5" - CFA		ER:RII / J.P.		MMER:		AUTOMA	ATIC		ALIGNMENT:			CL I-80 MP:			217.7	5 B-4	B-44-09	
	ОТР	NO.: _	71-14-08	RII NO.:	N-14-020(2)	DRILLING METH			CA	CALIBRATI		TION DATE:4/2			ELEVATION: 99			.5 (MSL) EOB:			7.5 ft.		PAGE		
START: <u>8/19/14</u> END: <u>8/19/14</u> SAMPLING METHOD						HOD:	SPT	Г	EN	ENERGY RATIO (%)			77.7			COORD:			535713.144 N, 24227			E	1 OF 1		
MATERIAL DESCRIPTION								0.50			T/	, REC SAMPLI		HP		GRADATION		N (%)	ATT	TERBERG		T 1		BACK	
AND NOTES							991.5	DEP	DEPTHS			(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL	
0.3' - ASPHALT (3.0")																									
0.9' - CONCRETE (11.0")																									
			,																						
							990 3		- 1 -	-															
0.3' - BASE MATERIAL - #2 STONE (3.0")																									
	BRO						990.0																	××××××××××××××××××××××××××××××××××××××	
TRACE	CLAY	MOIS	T.		IT WE OFFI	' Í	d																	12 72	
		,				0.0			- 2 -	2	0	22	SS-1	-	-					l l		45		JLV JL	
						¢. ⊂				34	9	33				-	-		-	-	-	15	A-1-0 (V)	1>11>	
						4																I	TLTL		
							988.5		- 3 -															1>1, 1>	
VERY S		TO HA	RD, BRO		GRAY SILT A	ND			Ŭ															72.72	
TRACE		TTI F F		VEL DA	FINE SAND,	г 💋				4														JLV JL	
										5	17	56	SS-2	3.25	5	7	8	46 34	33	18	15	17	A-6a (10)	< L 1< L	
-SHAL			ITS PRES	SENT IN S	35-2				- 4 -	8	5													7 LV 7 L	
-SHALL TRADMENTST RESERVING 5-2																					4 > 4				
																					1272				
									- 5 -															SLV SL	
							5	8	28	61	SS-3	3.50	7	8	10	42 33	32	19	13	19	A-6a (9)	1>11>			
								11	1				'	0	10	42 00	02	13				$\frac{1}{7}L^{\vee}\frac{1}{7}L^{\vee}$			
																						1	1>1 1>		
								- 6 -														<u> </u>	7676		
-SHALE FRAGMENTS PRESENT IN SS-4							9														1272				
0											32	89	SS-4	4.50	-	-	-	- -	-	-	-	12	A-6a (V)	$\frac{1}{7}L^{V}\frac{1}{7}L^{V}$	
									1 '4														1>111>		
							984.0	— FOB																jL jL	
								200																	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONCRETE; COMPACTED WITH THE AUGER SOIL CUTTINGS
		PROJECT:	PAV. REC.	PROG M	P 216.1-221.25	DRILLING FIF	RM / OPERATOR	R:RII	/ T.F.	DR	ILL RIG	: MOI	BILE B-53 (SN 624	400)	STAT	ION /	OFFS	ET:	60	+89 / 60	.5' LT	E	XPLOR	ATION ID
	Rii	CLIENT:		OTIC		SAMPLING FI	IRM / LOGGER:	RIL	/ J.P.	HA	MMER:		AUTOMA	ATIC		ALIG	NMEN	IT:	CL I	-80	MP	21	7.92	В-44	4-10
		OTP NO.:	71-14-08	_ RII NO.:	N-14-020(2)	DRILLING ME	THOD:	4.5" - CF	A	CA	LIBRAT	ION DA	TE:	4/26/13		ELEV	IOITA	N:	981.3 ((MSL)	EO	3:	8.0 ft.		
		START:	8/14/14	_ END:	8/14/14	SAMPLING M	IETHOD:	SPT		EN	ERGY F	ratio (%):	77.7		COO	RD: _		5350	84.48	88 N, 242	3427.0	015 E		TOFT
			MATERIA	L DESCR	IPTION		ELEV.	DEPT	HS	SPT/	Nco	REC	SAMPLE	HP	Ģ	RAD	ATIO	N (%)) /	ATTE	RBER	G	0	DOT	BACK
ŀ				ID NOTES			981.3			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL F	I W		55 (GI)	FILL
	1.4' - AS	SPHALT (1	7.0")				979.9		 - 1																
	0.6' - SI	LAG BASE	(7.0")			Š																			
PJ	VERY S AND BF COARS GRAVE	STIFF TO HA ROWN SILT SE TO FINE EL, DAMP TO	ARD, DARI AND CLA SAND, TR O MOIST.	K GRAY T Y, LITTLE ACE TO L	o Mottlee To Some .Ittle fine) GRAY	979.3		- 2 - - 3 -	³ 8 6	18	61	SS-1	4.5+	12	12	9	42	25	29	18 1	1 1:	2 A-6	Sa (7)	× + + + + + + + + + + + + + + + + + + +
2014\N-14-020 (2).GI	-COAI	L AND SHAL	E FRAGM	ENTS PR	ESENT IN S	S-2			- 4 	7 8 8	21	39	SS-2	4.5+	-	-	-	-	-	-		14	4 A-6	Sa (V)	
U:\GI8\PROJECTS\									- 6 -	5 6 7	17	67	SS-3	4.5+	4	5	11	46	34	31	16 1	5 10	6 A-6	a (10)	
3DT - 1/12/15 14:30 -							973.3	EOB	7	6 6 7	17	72	SS-4	2.75	-	-	-	-	-	-		1	7 A-6	Sa (V)	
2013 STD ODOT BORING LOG-TURNPIKE - OH DOT.	NOTES																								

ſ		NG FIRM / OPERATOR:	RII / J.K.	DRILL RIG	: <u>CME-55 (</u>	SN 386345) MATIC			62+60 / 17.0' I	RT E	EXPLORATION ID B-44-10A
	OTP NO · 71-14-08 BIL NO · N-14-020(2) DBILLIN		4 5" - CFA			10/20/13		DN: 980.7 (N	MSL) FOB	60ft	PAGE
	START: 12/8/14 END: 12/8/14 SAMPL	ING METHOD:	SPT	ENERGY F	RATIO (%):	92	COORD:	53490	01.220 N. 24234	68.450 E	1 OF 1
ŀ	MATERIAL DESCRIPTION	FI FV	9			E HP		ON (%) A	TTERBERG		
	AND NOTES	980.7	DEPTHS R			(tsf) GR	CS FS			WC CLA	SS (GI) FILL
ŀ	1.3'- ASPHALT (16.0")	<u> </u>			(70) .2	((0.))					
		979.4									
	0.5' - SLAG BASE (6.0")	978.9									
	FILL: HARD, BROWNISH GRAY SILT AND CLAY, SOME COARSE TO FINE SAND, LITTLE FINE GRAVEL, DAMP.		- 2	2							
2).GPJ	-CINDER AND SLAG FRAGMENTS PRESENT INSS-1	976.7	- 3 - 3	13 69 8	100 SS-1	4.5+ -				- A-6	$ \sum_{\substack{n \in V \\ n \neq k}} a(V) = \sum_{\substack{n \in V \\ n \neq k}} \sum_{\substack{n \in V \\ n \neq k}}$
ROJECTS\2014\N-14-020 (2	VERY STIFF, LIGHT BROWN SILT , SOME CLAY, SOME COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.	++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++	- 4 - 9 - 5 - 1 - 1	2 38 13 23	100 SS-2	3.75 -				- A-4	4b (V)
STD 0D0T B0RING L0G-TURNPIKE - 0H D0T.GDT - 1/12/15 14:30 - U:\GI8\P			—EOB								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

PROJECT: PAV. REC. PROG MP 216.1-221.25 DRILLING FIRM // CLIENT: OTIC SAMPLING FIRM // OTP NO.: 71-14-08 RII NO.: N-14-020(2) OTATE: 12/0/14 DRILLING METHING FIRM //	OPERATOR / LOGGER: DD:	: RII / J.K. RII / E.S. 4.5" - CFA	DF H/ C/	RILL RIG AMMER: ALIBRAT		ME-55 (SN AUTOMA TE:1	386345 TIC 0/20/13	5)	STAT ALIGN ELEV	ION / C NMENT ATION:	0FFSET	:(CL I-80 0.5 (MS	65+10 / L)	16.9' MP: EOB:	RT 218.0	EXPLOF 0 B-44	ATION ID I-10B PAGE 1 OF 1
	ELEV.		SPT/		REC	SAMPLE	HP		GRAD		(%)	AT	TERBI	ERG	13.840		BACK
AND NOTES	980.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	WC	CLASS (GI)	FILL
1.3'- ASPHALT (15.0") 0.5' - SLAG BASE (6.0") HARD, BROWN SILT AND CLAY, LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP TO MOIST.	979.2 978.7														_		
-ROOT FIBERS PRESENT IN SS-1		- 3 - 4 - 	6 7 8	3 20	88	SS-1	4.5+	-	-	-		_	-	-	-	A-6a (V)	
-SHALE FRAGMENTS PRESENT IN SS-2	974.5	— 5 — ЕОВ — 6	13 13	29	96	SS-2	4.5+	-	-	-		-	-	-	-	A-6a (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT:	PAV. REC.	PROG M	P 216.1-221.25	DRILLING FIRM	/ OPERATO	R:R	ll / J.K.	DRI	LL RIG	:	ME-55 (SN	38634	5)	STAT	ON/(OFFSE	T:	67+	+60 / 17.4	RT		ATION ID
	(Rii) CLIENT: -	74.44.00		NI 44 000/0	SAMPLING FIR	M / LOGGER		I / E.S.		MMER:		AUTOM	ATIC		ALIGN		Г:	CL I-	80	MP:	218.0		PAGE
	OTP NO.:	/1-14-08		N-14-020(2)	DRILLING MET	HOD:	4.5" - C	FA				(IE:	10/20/13	3	ELEV		I: <u>9</u>	31.2 (ľ		EOB:	750.050	5.0 ft.	1 OF 1
ŀ	START:	12/8/14		12/8/14	SAMPLING ME		501		ENE	RGIF		%):	92					53449	J1.55	UN, 2423	/53.250	E	
		MATERIAL		IPTION		ELEV.	DEP1	ГНS	SPT/	N ₆₀	REC	SAMPLE		(N (%)		TIE			ODOT CLASS (GI)	BACK
ŀ		ANI	DNOTES			981.2			NQD		(%)	U	((SI)	GR	LS	F5	51 0	JL I	_L	PL PI	WC	02.00 (0.)	
	1.3-ASPHALI (13)				979.9			-														
	0.5' - SLAG BASE	(6.0")				979.4			-														
	HARD, BROWN SII SAND, LITTLE FINI	L TY CLAY , E GRAVEL,	LITTLE C DAMP.	OARSE TO I	FINE			- 2 -	12 20	40	100												
0 (2).GPJ	-ROOT FIBERS P	RESENT IN	I SS-1					- 3 - 	10 10	40	100	55-1	4.5+	-	-	-	-	-	-		-	A-6D (V)	
-020						976 7							-	-	-	-	-	-	-		-	A-6b (V)	JLV JL
8\PROJECTS\2014\N-	SHALE : BROWN, I	HIGHLY WE	EATHERE	ED.		975.2	ЕОВ	- 5 - - 6-	10 16 29 38	69	100	SS-2	-	-	-	-	-	-	-		-	Rock (V)	
5TD 0D0T B0RING L0G-TURNPIKE - OH D0T.GDT - 1/12/15 14:30 - U:\GI8																							

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

D::	PROJECT:	PAV. REC.	PROG M OTIC	IP 216.1-221.25	DRILLING FIRM / OPERAT	DR:	RII / J.K. RII / J.P	D н	RILL RIG	: <u>M</u> O	BILE B-53 (AUTOMA	SN 624 ATIC	400)	STAT	FION / C	FFSET:	7 I I-80	′0+10 /	' 17.4' MP [.]	RT 218 1		RATION ID 14-11
	OTP NO.:	71-14-08	RII NO.:	N-14-020(2)	DRILLING METHOD:	4.5"	- CFA	c	ALIBRAT		ATE:	4/26/13		ELE\	ATION:	982.	6 (MS	L)	EOB:		3.1 ft.	PAGE
	START:	8/26/14	_ END:	8/26/14	SAMPLING METHOD:	Ś	PT	E	NERGY F	RATIO ((%):	77.7		coo	RD:	53	4281.1	174 N,	24238	87.256	E	1 OF 1
		MATERIA	L DESCR	PIPTION	ELEV.	DE	PTHS	SPT	7 N.	REC	SAMPLE	HP	(GRAD	ATION	l (%)	ATT	ERBI	ERG		ODOT	BACK
		AN	D NOTES	5	982.6			RQE	D 160	(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL
1.3' - AS	AND NOTES 1.3' - ASPHALT (16.0") SHALE: BROWN, HIGHLY WEATHERED.				981.3	TR		-														
SHALE:	BROWN, H	HIGHLY WE	EATHERE	ED.			- 2 -	14 50/4'		60	SS-1	-	-	-	-		-	-	-	17	Rock (V)	-
	A	UGER REI	-USAL @) 3.1'	979.5		3															

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 385 LBS CONCRETE

	PRC	DJECT:	PAV. RE	C. PRC	G N	IP 216.1-221.2	5 DRILLING	FIRM /	OPERATO	R:F	RII / J.K.		ORILL R	G:	CME	E-55 (SN	38634	5)	STAT	ION / (OFFSET	:	72+6	0 / 16.4	4' RT	EXPLO	RATION ID
Rii	CLI	ENT:		C	JTIC		SAMPLIN	g firm	/ LOGGER:	R	I / E.S.	ŀ	HAMME	२:	A	AUTOMA	TIC		ALIG	NMEN	Г:	CL I-	80	_ MP:	218	14 B-4	i -11A
	OTF	NO.:	71-14-0	3 RII	NO.:	N-14-020(2)	DRILLING	METHO	DD:	4.5" - C	FA	0	CALIBR	TION	DATE	: <u> </u>	0/20/13	8	ELE\	ATION	:98	5.0 (N	/ISL)	_ EOE	:	6.0 ft.	PAGE
	STA	RT:	12/4/14	EN	ID:	12/4/14	SAMPLIN	G METH	HOD:	SP	Г	E	ENERG	' RATI	O (%):	:	92		coo	RD:	Ę	53407	0.280	N, 242	4021.50	0 E	1 OF 1
			MATER	IAL DE	ESCR	RIPTION			ELEV.		гне	SP	T/ N	RE	CSA	AMPLE	HP	(GRAD	ATIO	۷ (%)	A	TTER	BERO	3	ODOT	BACK
			-	ND N	OTES	5			985.0	DEP	113	RQ	D N ₆) (%)	ID	(tsf)	GR	CS	FS	SI C	LL	L P	L PI	WC	CLASS (GI)	FILL
1.3'- AS	PHAL	T (16.	5.0")																								
											- 1 -	-															
		A O F	(0.011)					\rightarrow	983.7																		
0.5 - SL	AG B	ASE	(6.0)						083.2			-															
HARD F	BROV	VNISH	GRAY				ARSE		303.2		2																\leq \vee \leq \vee
TO FINE	E SAN	ND, TF	RACE FIN	IE GR	AVEL	, DAMP.																					1272
																											JLV JL
												6															1>11>
											- 3 -	6	21	10	0 3	SS-1	3.00	-	-	-	- -		- -	- -	-	A-6b (V)	7676
													4														$\langle v \rangle$
																											1212
																											JLV JL
											- 4 -						4 5 1										1>11>
									980.5	TR						-	4.57	-	-	-				-	-	A-00 (V)	7676
SHALE	BLA	CK, H	IGHLY V	/EATH	IERE	D.				IIX		10															$\langle V \rangle$
											- 5 -	17	_E 64	10	0 3	SS-2											7272
													.5 38				-	-	-	-			- -		-	Rock (V)	JLV JL
											-	-															1>11>
									979.0																		7676
									1 0.0.0	-EOB	-6																121 21 21 2

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ſ	Rii	PROJECT: CLIENT: OTP NO.:	PAV. REC. 71-14-08	PROG M OTIC _ RII NO.:	IP 216.1-221.2	5 DRILLING FI SAMPLING F DRILLING M	rm / Operator: Firm / Logger: Ethod:	RII RII / 4.5" - CF/	/ J.K. E.S. A	DRII HAM CAL	LL RIG IMER: IBRAT	:C	ME-55 (SN AUTOM TE:	I 38634 ATIC 10/20/13	5)	STATI ALIGN ELEVA	ON / (MENT TION	DFFSE T: I:9	ET: CL I 988.1 (75 I-80 (MSL)	5+10 / 16 MP) EO	.4' RT :218 B:	EXPLOR .19 6.0 ft.	ATION ID 4-11B PAGE
		START:	12/4/14 MATERIA	_ END:	12/4/14	SAMPLING N	METHOD:	SPT DEPTH	IS	ENE SPT/	RGY F	REC	%): SAMPLE	92 HP	6	COOF		N (%)	5338 /	858.82 ATTE	20 N, 242 ERBER	<u>4154.86</u> G		BACK
-	1.4'- ASPH	HALT (17	<u> </u>	<u>D NOTES</u>	5		988.1			RQD	50	(%)	ID	(tst)	GR	CS	FS	SI	CL	LL	PL F	I WC	CLASS (GI)	FILL
-	0.5' - SLAO HARD, BR GRAVEL,	G BASE ROWNISH TRACE ((6.0") I GRAY SII COARSE T	LT AND C O FINE S	LAY , LITTLE AND, DAMP	E FINE	986.2		- 2 - - 2 - 1	1 11	55	83	<u> </u>	4.5+	-	-	-	-	-	-		_	A-6a (V)	
(2).GPJ	-SHALE I SHALE : B	FRAGME BLACK, H	NTS PRES	SENT IN S	SS-1 D.		984.6	—TR——		25 18	55	00	33-1	-	-	-	-	-	-	-			Rock (V)	
PROJECTS/2014/N-14-020							982.1		1 - 5	5 16 18 22	52	100	SS-2	-	-	-	-	-	-	-		_	Rock (V)	
OT.GDT - 1/12/15 14:30 - U:\Gi8\F								-EOB	6					1		I							1	···· · ·
LOG-TURNPIKE - UH U																								
J13 STD UDUT BURING																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Rii	PROJE CLIEN	ECT: T:	PAV. RE	C. PRO)g M Otic	P 216.1-221.2	5 DRILLING SAMPLIN	G FIRM / (G FIRM /	OPERATO	R: RI RII	I / J.K. / E.S.	DF H/	RILL RIG AMMER:	: <u> </u>	ME-55 (SN AUTOM	N 386345 ATIC	5)	STAT ALIG	FION / NMEN	OFFS	ET: _	77 - I-80	7+60 /	' 16.7' MP:	RT 218.2	EXPLOI	RATION ID 4-11C
	OTP N	0.: _	71-14-08	8 R	II NO.:	N-14-020(2)		METHO	D:	4.5" - CF	FA	C/	ALIBRAT	ION DA	TE:	10/20/13	3	ELE\	/ATIO	N:	991.9	(MSL	_)	EOB:		5.9 ft.	PAGE
	STAR						SAMPLIN	G METH		SPT			NERGY I		%):	92			RD:	NI /0/	533	647.1	80 N,	24242	87.950	E	
			WAIERI A	AL D ND N	IOTES	IPTION S			CLEV.	DEPT	HS	RQD	N ₆₀	(%)		(tsf)	GR	CS	FS	SI	CL		PL	PI	wc	ODOT CLASS (GI)	FILL
1.3'- AS	PHALT	(16.	D")						990.6			-									-						
0.5' - SL HARD, I		SE (6.0") GRAY S		AND C	LAY, LITTLE			990.1			-															- τ L ^N τ L
COARS	ETOFI	NE S	and, i	RACI	= FINE	: GRAVEL, I	JAMP.				- 3 -	12 4	15 6	89	SS-1	4.5+	-	-	-	-	-	-	-	-	-	A-6a (V)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
									987.9	TR	- <u> </u>	10				-	-	-	-	-	-	-	-	-	-	A-6a (V)	
SHALE	: BLACł	K, HI	GHLY W	'EATI	HEREI	D.					- 5 -	34 34	5	100	SS-2	-	-	-	-	-	-	-	-	-	-	Rock (V)	
									986.0	EOB	-	32 50/4"	-	90	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

D::	PROJECT: <u>PAV. REC.</u>	PROG MI OTIC	P 216.1-221.25	DRILLING FIRM	// OPERATOF M / LOGGER:	≀:F 	<u>RII / J.K.</u>) RILL RIG	: MOI	BILE B-53 (AUTOM/	<u>SN 624</u> ATIC	400)	STATI ALIGI	ION / O	FFSET:	7 1. I-80	<u>′9+48 /</u>	/ 63.0' / MP	LT 218 (EXPLOF	₹ATION ID 14-12
	OTP NO.: 71-14-08	RII NO.:	N-14-020(2)	DRILLING MET	HOD:	4.5" - (2FA		CALIBRAT		TF:	4/26/13	<u></u>	ELEV	ATION	994	8 (MS	۲) ،	EOB:	210.2	<u></u>	PAGE
	START: 8/14/14	END:	8/14/14	SAMPLING ME	THOD:	SP'	<u>л. т.</u> Т		ENERGY F	RATIO (%):	77.7		COOF	RD:	5	33530.	<u>-/</u> - 531 N.	. 24244	155.694	E	1 OF 1
	MATERIA				ELEV.			SP1	τ/	RFC	SAMPLE	HP		RAD		(%)	TAT		ERG			BACK
	AN	D NOTES	5		994.8	DEP	THS	RQI	D N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI CL		PL	PI	wc	CLASS (GI)	FILL
1.4' - AS 0.4' - SI HARD, LITTLE	SPHALT (17.0") LAG BASE (5.0") MOTTLED BROWN AN COARSE TO FINE SA	ND GRAY	⁷ SILTY CLAY CE FINE GR/		993.4 993.0		- 1 - - 2 -	-														_
MOIST. -SHAL	.E FRAGMENTS PRES	ENT IN S	\$S-1		991.5	—TR—_	- 3 -	2 4	8 16	33	SS	4.50	7	5	10 4	6 32	33	16	17	17	A-6b (11)	
SHALE	: GRAY, HIGHLY WEA	THERED	ι.				- 4 -	34 50/2	<u>></u> " -	75	SS	-	-	-	-		-	-	-	5	Rock (V)	
	AUGER REF	-USAL @	; 5.1'		<u> </u>		5					<u> </u>								ا'		
		_	_	_			_	_	_		_	_							_			

D::	PROJECT: <u>PAV. REC. PRO</u>	DG MP 216.1-221.25	DRILLING FIRM / (OPERATOR	:RII / J.K	<u>. </u>		RIG:	CME-55 (S	N 38634	5)	STATIO)FFSET 	: CL I-80	88+17 / 2	2.8' RT	EXPLO	RATION ID
	OTP NO.: 71-14-08 R	UNO.: N-14-020(2)	DRILLING METHC	DD:	4.5" - CFA		CALIB		DATE:	10/20/13	3	ELEVA	TION:	 : 10	07.5 (M	SL) E	г. <u>2</u> ОВ:	4.0 ft.	PAGE
	START: 12/8/14 E	ND: 12/8/14	SAMPLING METH	OD:	SPT		ENER	GY RAT	O (%):	92		COOR	D:		532749	.220 N, 2	424845	.030 E	1 OF 1
	MATERIAL D	ESCRIPTION	<u> </u>	ELEV.		S	PT/	RE	C SAMPL	E HP	0	GRADA	TION	√(%)	AT	TERBE	RG	ODOT	BACK
	AND N	IOTES		1007.5	DEPINS	F	RQD I	60 (%) ID	(tsf)	GR	CS	-s :	SI C	L LL	PL	PI V	VC CLASS (GI) FILL
1.3'- ASF 0.5' - SL/	PHALT (15.0") AG BASE (6.0")	AND CLAY SOME		1006.2	- 1														
-CINDE	TO FINE SAND, SOME	FINE GRAVEL, MC	JIST.		- 2	1.	1												
-SHALE	E FRAGMENTS PRESEN	IT FROM 3.8' TO 4.0	0'	1003.5	- 3	1	4 14 9	13 10	0 SS-1	4.5+	-	-	-	- -		-	-	- A-6a (V))

STD 0D0T BORING L0G-TURNPIKE - OH D0T.GDT - 1/12/15 14:30 - U:\GI8\PROJECTS\2014\N-14-020 (2).GPJ 2013

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: <u>PAV. REC. P</u>	ROG M	IP 216.1-221.25	DRILLING FIRM / (:: R	II / J.K.	DR	ILL RIG	MO	BILE B-53 (S	SN 6244	400)	STAT	ION /	OFFSE	ET:	<u>89</u> . -80	+17 / 26. MP:	7' RT	EXPLOR	ATION ID 4-13
KII	OTP NO.: 71-14-08	RII NO.:	N-14-020(2)	DRILLING METHC	D:	4.5" - C	FA	CA	LIBRAT		TE: 4	/26/13		ELE/	ATIO	N:	008.9	(MSL	IVIF.) EOE	210.9	3.7 ft.	PAGE
	START: 8/28/14	END:	8/28/14	SAMPLING METH	OD:	SP1	-	EN	ERGY F	RATIO (%):	77.7		coo	RD:		5326	63.48	89 N, 242	4896.55	δE	1 OF 1
	MATERIAL	DESCR	IPTION		ELEV.	DEPT	HS	SPT/	N ₆₀	REC	SAMPLE	HP	Ģ	GRAD	ATIO	N (%)	Å			3		BACK
1.01	AND	NOTES	<u>,</u>	N	1008.9			RQD		(%)	ID	(tst)	GR	CS	FS	SI	CL		PL P	WC	OLAGO (OI)	
0.3' - AG [,] FILL: GR	1.3' - ASPHALT (16.0") 0.3' - AGGREGATE BASE (3.0") FILL: GRAY GRAVEL (PEA GRAVEL)				1007.6		 - 1 															
-GEOTE SHALE:	EXTILE FABRIC PRES	ENT @	<u>3.4'</u>		1005.5	—TR—	- 3 3	1 2 23	32	44	SS-1	-	-	-	-	-	-	-		-	A-1-a (V) Rock (V)	
Δ	AUGER REFL	USAL @	3.7'		1003.2	-EOB								L						. 12		<u>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 330 LBS CONCRETE

D::	PROJECT: <u>PAV. REC.</u> CLIENT [.]	PROG M OTIC	<u>IP 216.1-221.25</u>	DRILLING FIRM / SAMPLING FIRM	OPERATOF	t: R	II / J.K. / E.S.		RILL RIG	:	CME-55 (SN AUTOMA	386345	5)	STATI	ON / C	DFFSE	T:	90+17 D	/ 28.5' MP [.]	RT 218.4		RATION ID 4-13A
	OTP NO.: 71-14-08	RII NO.:	N-14-020(2)	DRILLING METHO) D:	4.5" - C	FA	CA	LIBRAT		TE: 1	0/20/13	3	ELEV	ATION	: 10	010.0 (N	ISL)	EOB:	210.4	.0 ft.	PAGE
	START: 12/8/14	END:	12/8/14	SAMPLING METH	IOD:	SPT		EN	IERGY I	RATIO (%):	92		COOF	RD:		532577	.940 N,	24249	48.360	E	1 OF 1
	MATERIA	L DESCR	IPTION		ELEV.	DEPT	ЪΡ	SPT/	N	REC	SAMPLE	HP	Ģ	RADA		۱ (%)	A٦	TERB	ERG		ODOT	BACK
	ΑΛ	ID NOTES	3		1010.0			RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL LI	. PL	PI	WC	CLASS (GI)	FILL
1.3'- ASF 0.5' - SL/	PHALT (15.0") AG BASE (6.0")				1008.7		 - 1 															
HARD, L TO FINE	IGHT BROWN SILT SAND, TRACE FINE	AND CLAY GRAVEL	Y, LITTLE CO L, DAMP.	ARSE	1007.5		- 2 -					-	-	-	-	-		-	-	-	A-6a (V)	
SHALE :	LIGHT BROWN, HIG	HLY WE	ATHERED.		1006.0	—TR—	- 3 - - <u>-</u>	21 31 29 17	92	100	SS-1	-	-	-	-	-		-	-	-	Rock (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJI	CT: PAV. RE	C. PROG	MP 216.1-221.2	5 DRILLING	FIRM / OPERATOR	R:R	I / T.F.	DR	ILL RIG	: <u>M</u> O	BILE B-53 (SN 624	400)	STAT	ION /	OFFS	SET: _	98	8+06 / 5	50.2'	LT	EXPLO	RATION ID
	(Rii) CLIEN	[:		N 14 020(2)		G FIRM / LOGGER:	RII	/ J.P.		MMER:			ATIC				IT:	CL	1-80	M	IP: _	218.6	3	PAGE
	STAR	J <u>71-14-0</u> · <u>8/15/14</u>		. <u>N-14-020(2)</u> 8/15/14	SAMPLING		4.5 - Cr SPT			ERGY F		(): (%):	4/20/13				IN	531	952 16	<u>.)</u> ⊏ 36 N 2	ОБ. 4254 ⁻	36 045	F.911.	1 OF 1
ŀ	OTAR	. 0/10/14 MATER					011							6			NI (%	301			PC	30.0-5		DACK
			AND NOTE	S		1013.9	DEPT	ΉS	RQD	N ₆₀	(%)		(tsf)	GR	cs	FS	SI	CL		PL	PI	wc	CLASS (GI)	FILL
ľ	0.5' - ASPHALT	(6.0")		-							()													
	0.8' - CONCRE	E (10.0")				1013.4		 - 1																
	0.6' - SLAG BA	SE (7.0")				1012.0																		
	STIFF TO VER SILTY CLAY, LI FINE GRAVEL,	Ý STIFF, MC ITLE COAR MOIST.	OTTLED GI	RAY AND BR NE SAND, TR	OWN ACE			- 2 - - 3 -	WOH 2 3	6	67	SS-1	1.50	5	3	8	48	36	34	16	18	23	A-6b (11)	
014\N-14-020 (2).GPJ						1009.0		- 4 -	⁵ 66	16	44	SS-2	2.50	3	3	9	45	40	34	16	18	23	A-6b (11)	
J:\GI8\PROJECTS\2(HARD, MOTTL SOME COARS DAMP.	TO FINE S	AND GRA AND, TRA	Y SILI AND C	AVEL,			- 6 -	7 10 9	25	89	SS-3	4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	
DT - 1/12/15 14:30 - L						1006.0	FOB	- 7	10 13 13	34	67	SS-4	4.50	-	-	-	-	-	-	-	-	13	A-6a (V)	
2013 STD ODOT BORING LOG-TURNPIKE - OH DOT.G																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ſ		PROJECT	PAV. REC	. PROG N	/IP 216.1-221.25	DRILLING FIRM	OPERATOR	R:R	ll / J.K.	DI	RILL RIG	: MO	BILE B-53 (SN 624	400)	STATIC	N / OFF	SET:	1(07+38	/ 29.3'	RT		RATION ID
	Rii)	CLIENT:		OTIC		SAMPLING FIRM	I / LOGGER:	RII	/ J.P.	н	AMMER:		AUTOM/	ATIC		ALIGN	/ENT:	Cl	L I-80		MP: _	218.8	<u>в В-4</u>	4-15
		OTP NO.:	71-14-08	_ RII NO.:	N-14-020(2)	DRILLING METH	OD:	4.5" - Cl	FA	C/	ALIBRAT	ION DA	TE:	4/26/13		ELEVA	TION:	1009.	.8 (MS	SL)	EOB:		B.0 ft.	
		START:	8/27/14	_ END: _	8/27/14	SAMPLING MET	HOD:	SPT	•	El	NERGY F	RATIO (%):	77.7		COORI):	53	1121.5	536 N,	24258	65.908	E	TUFT
			MATERIA	L DESCR	<i>IPTION</i>		ELEV.	DEPT	нѕ	SPT	V Noo	REC	SAMPLE	HP	Ģ	RADA	TION (%)	ATT	ERB	ERG		ODOT	BACK
				ID NOTES	3		1009.8		-	RQL) 00	(%)	ID	(tst)	GR	CS F	S SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	0.5' - AS	PHALI (6	5.0")			\otimes	1000 3																	
ŀ	0.9' - 0.0	NCRETE	(11 0")			\longrightarrow	1009.3			-														
	0.0 00		(11.0)			\sim																		
						\otimes	1000 4		- 1 -															
ŀ	0.6' - SL	AG BASE	(7.0")			XX	1000.4		L .	_														
	0.0 01		(1.0)			\sim	1007.0																	
ŀ	VERY S	TIFE MO					1007.0		- 2 -															
	SILT, LI	TTLE COA	RSE TO FI	NE SAND), TRACE FIN	E H	-																	
	GRAVEL	_, DAMP.					-			3	13	80	SS-1	3 50	1	1	8 37	17	11	10	25	16	A_7_6 (15)	
							-		- 3 -	·	6	03	00-1	0.00	-	-	0 51	- "		13	25	10	A-7-0 (13)	
							1006.2																	
2	VERY S						1000.3		-									_						
9. (v	COARSI	E TO FINE	E SAND, TR	ACE FINI	E GRAVEL, D	AMP.	3																	
20 (- 4 -	4	19	22	66.0	4.5+	2		0 12	11	25	17	10	14	A 66 (11)	$\int L^{\vee} \int L$
-+-O										0	8	33	<u> 33-2</u>	4.5+	3	4	9 43	41	35	17	10	14	A-00 (11)	1>11>
- 11+																								TLTL
									- 5 -	-								-	-					$\langle \rangle \rangle \langle \rangle \rangle$
5							=																	12112
ЦПС	-CINDE	R AND SI	LAG FRAG	MENTS P	RESENT IN S	S-3	=			9	20	22	00.0	1 00								10		$\vec{\gamma} \stackrel{\vee}{_{-}} \stackrel{\vee}{_{-}} \vec{\gamma} \stackrel{\vee}{_{-}} \vec{L}$
Ľ										11	2 30	33	55-3	4.00	-	-	- -	-	-	-	-	16	A-60 (V)	$ 1\rangle 1\rangle$
e e							3																	72.72
5							=		-									_						JLV JL
00:-																								1>11>
2 0							=		- 7 -	9	10													7676
1							=			14	9 43	67	SS-4	4.50	-	-	- -	-	-	-	-	13	A-6b (V)	
-											0													1>112
נ							1001.8	-EOB	<u> </u>															$\leq L^{\vee} \leq L^{\vee}$
Ş																								
Ę																								
j																								
Ļ																								
Ż																								
ģ																								
۲																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

STD ODOT BORING

2013

		PROJEC	T: PAV. REC.	PROG M	P 216.1-221.25	DRILLING FI	IRM / OPERATOR	R:	I / T.F.	DRI	LL RIG	: <u>M</u> O	BILE B-53 (SN 624	400)	STAT	ION /	OFFSET	:	121+84	4 / 59.4	'LT	EXPLOR	RATION ID
	(Rii	CLIENT:		OTIC			FIRM / LOGGER:	RI	<u>/ J.P.</u>	HAN	MMER:		AUTOMA			ALIGI		IT:	CL 1-76	<u>}</u>	MP:	219.0		PAGE
		OIP NO.	. /1-14-08	_ RII NO.:	N-14-020(2)			4.5" - Cł	A				ATE:	4/26/13		ELEV		N: <u>10</u>)2.4 (N	<u>SL)</u>	EOB:	1	.8 ft.	1 OF 1
		START:	8/15/14	_ END:	8/15/14	SAMPLING		SPT		ENE	RGYF		(%): 	//./				NL (0()	29945	.567 N	, 24267	12.442	E	
			MATERIA		IPTION		ELEV.	DEPT	HS	SPT/	N ₆₀	REC	SAMPLE	HP	(RAD		<u>N (%)</u>		IERE	BERG		ODOT	BACK
	0 4' /		AN 5.0")	DNOIES			1002.4			RQD		(%)	U	(tsr)	GR	CS	FS	SI C		PL	PI	wc	01100 (01)	
	0.4 - 7	CONCRETE	(11.0")				1002.0 1001.1		 - 1															
	0.5' - S	SLAG BASE	(6.0")				1000.6																	
	STIFF SILT A SAND -SLA	TO VERY \$ ND CLAY, \$, LITTLE FII G FRAGME	STIFF, BRO' SOME TO A NE GRAVEL NTS PRESE	WNISH G ND COAF , DAMP. ENT IN SS	RAY TO GR/ SE TO FINE 3-1	4Y			- 2 - - - 3 -	5 5 7	16	89	SS-1	2.50	19	12	14	32 2	3 29	17	12	10	A-6a (5)	
4\N-14-020 (2).GPJ							997.6		- 4 - 4	7 6 7	17	67	SS-2	2.00	11	21	16	28 2	4 39	26	13	15	A-6a (5)	
il8/PROJECTS/2014	STIFF SOME DAMP	TO VERY S COARSE 1	STIFF, BRO TO FINE SA	WNISH G ND, TRAC	RAY SILTY (E FINE GRA	SLAY, Avel,			- 5 - - - 6 -	7 6 6	16	61	SS-3	2.50	-	-	-		_	-	-	17	A-6b (V)	
0/:U - 0	-ORC	SANICS PR	ESENT IN S	S-4A			995.7		-					1.50	-	-	-		-	-	-	19	A-6b (V)	$\overrightarrow{1}$
- 1/12/15 14:3	MEDIU SAND	JM DENSE, , SILT, AND	BROWNISH CLAY, MOIS	H GRAY G St.	RAVEL WIT	H			- 7 -	7 10 9	25	33	SS-4	-	-	-	-		-	-	-	13	A-2-6 (V)	
TD ODOT BORING LOG-TURNPIKE - OH DOT.GD																								

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

2013

	PRO	JECT:	PAV. REC	. PROG	MP 216.1-221.25	DRILLING FIRM	/ OPERATO	R:R	ll / J.K.	DF	RILL RIG	: MO	BILE B-53	(SN 624	400)	STAT	ON / OF	FSET:	1:	25+87	/ 29.7	RT	EXPLO	RATION ID
(Rii)	CLIEI	NT: _		OTIC		SAMPLING FIR	// LOGGER	:RI	/ J.P.	H	AMMER:		AUTOM	IATIC		ALIGN	IMENT:	С	L I-76		MP:	219.1	5 B-4	4-17
	OTP	NO.:	71-14-08	RII NO.	N-14-020(2)	DRILLING METI	HOD:	4.5" - C	FA	C/	ALIBRAT	ION DA	TE:	4/26/13		ELEV	ATION:	1000	.6 (MS	SL)	EOB:	7	7.9 ft.	PAGE
	STAF	RT:	8/27/14	END:	8/27/14	SAMPLING ME	'HOD:	SPT	•	EN	NERGY I	RATIO (%):	77.7		COOF	RD:	52	9557.4	468 N,	24268	51.902	E	1 OF 1
			MATERI	AL DESC	RIPTION		ELEV.		чс	SPT/	7 N	REC	SAMPLE	E HP	(GRAD/	ATION ((%)	ATT	ERB	ERG		ODOT	BACK
			A	ND NOTE	S		1000.6		115	RQD) ¹	(%)	ID	(tsf)	GR	CS	FS SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.6' - AS	PHAL	T (7.	0")			\otimes	8																	
						\otimes	1000.0		_	_														
0.9' - CC	ONCRE	ETE ((11.0")			\sim	$\widehat{\mathbf{A}}$																	
						\otimes	X		- 1 -	-														
						\otimes	999.1																	
0.4' - SL	AG BA	٨SE	(5.0")			\longrightarrow			-															
							998.7		_ 2 _					_										
SAND T	RACE	FINI	= GRAVE	, LIIILE I DAMP	COARSE TO I				2															
0, 110, 1				, <i>Di</i> 111					_	3														
										4	13	72	SS-1	4.5+	1	3	8 4	47	38	18	20	16	A-6b (12)	
							_		- 3 -	- `	0													
							_																	
							_		-															
										13														
									- 4 -	11	23	39	SS-2	4.5+	3	4	8 4	44	35	17	18	14	A-6b (11)	JLV JL
							_		_		7												. ,	1>11>
							_																	TLTL
							_		- 5 -															$ <, \vee <, $
							_																	7272
-ROCK	FRAG	GMEN	ITS PRES	SENT IN S	SS-3				-	13	11	20	<u> </u>	4 5 1								10		JLV JL
										14	8 41	39	55-5	4.5+	-	-	- -	-	-	-	-	13	A-0D (V)	1>11>
									- 6 -		- -													JLV JL
														_										$\frac{1}{1} > \frac{1}{1} < \frac{1}{1} > \frac{1}$
									-															7676
									_ 7 _	20														
									'	20	60	100	SS-4	4.5+	-	-		-	-	-	-	13	A-6b (V)	12112
							-		_	20	6													JLV JL
							992.7	500																1>11>
								EOR				•			-	·			-					

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT	: PAV. REC.	PROG M	IP 216.1-221.25	DRILLING FI	RM /	OPERATOR:	:RII	/ T.F.	[DRILL R	G: _M	OBILE B-53	(SN 624	400)	STATI	ON / OF	FSET:	1	35+22	/ 50.8	' LT	EXPLOR	ATION ID
Rii	CLIENT:		OTIC		SAMPLING F	IRM	LOGGER:	RII	/ J.P.	1	HAMMEI	२:	AUTOM	ATIC		ALIGN	IMENT:	C	L I-76		MP:	219.3	₃₃ B-4	4-18
	OTP NO.:	71-14-08	_ RII NO.:	N-14-020(2)	DRILLING ME	THC	D:	4.5" - CF	A		CALIBRA	TION D	ATE:	4/26/13		ELEV/	ATION:	995.	6 (MS	L)	EOB:		7.9 ft.	PAGE
	START:	8/14/14	_ END:	8/14/14	SAMPLING N	IETH	OD:	SPT		1	ENERG	' RATIO	(%):	77.7		COOF	RD:	52	8809.3	379 N,	24274	18.858	E	1 OF 1
		MATERIA	L DESCR	IPTION			ELEV.			SP	T/ N	REC	SAMPLE	E HP	(GRADA	ATION	(%)	ATT	ERB	ERG		ODOT	BACK
		A٨	ID NOTES	;			995.6	DEFI	15	RQ		' (%)	ID	(tsf)	GR	CS	FS S	I CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.6' - AS	SPHALT (7	7.0")			K	\otimes																		
						\bigotimes	995.0		_	_														
0.8' - CC	ONCRETE	(10.0")			k	\bigotimes																		
						\bigotimes			- 1 -	_														
		(0.011)				XX	994.2																	
0.5' - SL	AG BASE	(6.0")			K	\bigotimes	002 7																	
HARD		BROWN A			ISH	\sim	993.7		- 2 -			_												
GRAY S	SILTY CLA	Y, TRACE T	O LITTLE	COARSE TO	D FINE																			
SAND, 1	TRACE FI	NE GRAVEL	_, DAMP T	O MOIST.					_	2	13	106	SS_1	1 5+	5	2	7 1	13	10	17	23	21	A-6h (13)	
										-	6	100	00-1	4.51		2	/ T			11	20	21		
									- 3 -															
									L	_		_						-						
									- 4 -	6	10	07		4.5.	-					47	10			
											8 19	67	55-2	4.5+	5	3	9 4.	3 40	30	17	19	14	A-60 (12)	7676
									-		-													JLV JL
									5									_						< 1 1 < 1 >
									- 5 -															TLTL
					F				_	_ 11														$<, \vee <, :$
-SLAG	FRAGME	NTS PRESI	ENT IN SS	5-3	E					15	5 39 15	39	SS-3	4.5+	-	-	- -	-	-	-	-	19	A-6b (V)	7272
					E				- 6 -		10													$\frac{1}{7}L^{V}\frac{1}{7}L^{U}$
																								< L 1 < L
									-															7676
									_ 7 -	14														
										11	1 27	72	SS-4	4.5+	-	-	- -	-	-	-	-	12	A-6b (V)	1>11
									-	-	10													$\vec{\gamma} L^{\vee} \vec{\gamma} L^{\vee}$
					-		987.7	-FOB																< / < /
								200																

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Γ		PROJECT:	PAV. REC	. PROG N	IP 216.1-221.25	DRILLING FIRM /	OPERATOR	R:R	ll / J.K.	DR	ILL RIG	6: <u>M</u> O	BILE B-53	(SN 624	400)	STAT	rion /	OFFS	ET:	14	4+39	/ 29.4'	RT	EXPLO	RATION ID
	Rii)	CLIENT:		OTIC		SAMPLING FIRM	/ LOGGER:	RII	/ J.P.	HA	MMER:		AUTOM	ATIC		ALIG	NMEN	IT:	CL	I-76		MP: _	219.5	0 B-	4-19
		OTP NO.:	71-14-08	_ RII NO.:	N-14-020(2)	DRILLING METHO	DD:	4.5" - Cl	FA	CA	LIBRAT	ION DA	TE:	4/26/13		ELE\	/ATIO	N:	990.4	(MSL	_)	EOB:	8	3.0 ft.	
L		START:	8/27/14	END:	8/27/14	SAMPLING METH		SPT		EN	ERGY I	RATIO (%):	77.7		C00	RD:		527	990.5	578 N,	24278	40.438	E	1011
			MATERIA				ELEV.	DEPT	ΉS	SPT/	N ₆₀	REC	SAMPLE	E HP		RAD		N (%) און	5) C	ATT			WC	ODOT CLASS (GI)	BACK
ŀ	0.4' - ASI	PHALT (5	.0")	DNOTES)		990.4			RQD		(/0)	U	(151)	GR	03	FO	31	UL	LL	FL	FI	WC	(-)	
┢			(11 0")			X	990.0		L .																
	0.9 - 00	NCRETE	(11.0)																						
							000 1		- 1 -	-															
ŀ	0.7' - SLA	GRASE	(8.0")				989.1																		
	0.7 027	IO BAOL	(0.0)																						
ŀ							988.4		- 2 -																
	COARSE	TO FINE	SAND. TR	ACE FINI	E GRAVEL. D	AMP.																			
			, ,		- ,				-	2 5	23	78	SS_1	3 00	8	10	11	40	31	20	18	11	16	A-62 (8)	
	-SHALE	FRAGME	NTS PRE	SENT IN S	SS-1				- 3 -	13	20	10	00-1	3.00	0	10		40	51	23	10		10	A-0a (0)	
							086.0																		
	STIFF, B	ROWN AN	D GRAY	CLAY, AN	D SILT, TRA				-																
5.(2)	COARSE	TO FINE	SAND, TR	ACE FIN	E GRAVEL, N	10IST.			_ 4 -	6															
NZN-									-	⁶ 10	28	100	SS-2	2.00	2	3	7	40	48	42	18	24	18	A-7-6 (14	$) \stackrel{\checkmark}{7} \stackrel{\lor}{L} \stackrel{\lor}{7} \stackrel{\checkmark}{L}$
									-	12															
141							985.4		F																1>112
212	VERY ST	TIFF TO H	ARD, BRO	WN SILT	AND CLAY, 1	RACE			- 5 -																7 4 7 4
	COARSE	TO FINE	SAND, TR	ACE FINI	E GRAVEL, D	DAMP.			_	10															
С Ч										10	28	50	SS-3	3.50	-	-	-	-	-	-	-	-	15	A-6a (V)	1>112
1015									- 6 -	12															7 2 7 2
2									_					_											
- 00.4																									1>11>
0	-ROCK	FRAGME	NTS PRES	ENT IN S	S-4				- 7 -	11			~~ <i>i</i>												7676
121										11 15	34	100	SS-4	4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	
-																									1>11>
د פ							982.4	-EOB	-8-																
S																									
5																									
Ľ																									
5																									
2 C C																									
2																									
2																									
2015																									

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: <u>PAV. REC. PROG MP 216.1-221.25</u> DRILL	ING FIRM / OPERATOR:	RII / T.F.	DRILL RIG	: MOE	BILE B-53 (\$	SN 6244	00)	STATI	ON /	OFFSET:	1	53+79	9/51.0	' LT	EXPLOF	RATION ID
		LING FIRM / LOGGER:	RII / J.P.	HAMMER:		AUTOMA	TIC		ALIGN	IMEN	IT:C	L I-76		MP:	219.6	₃₈ B-4	4-20
	OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u> DRILL	ING METHOD:	4.5" - CFA	CALIBRAT	ION DA	TE:	4/26/13		ELEVA	ATIO	N:983	7 (MS	SL)	EOB:		9.1 ft.	PAGE
	START: <u>8/15/14</u> END: <u>8/15/14</u> SAMF	LING METHOD:	SPT	ENERGY F	ratio ('	%):	77.7		COOR	RD: _	52	7238.	756 N	, 24284	109.613	E	1 OF 1
	MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/ No.	REC	SAMPLE	HP	G	RADA		N (%)	AT	TERB	BERG		ODOT	BACK
	AND NOTES	983.7		RQD	(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL
	0.4' - ASPHALT (5.0")	983.3															
	0.9' - CONCRETE (11.0")																
			_ 1 _														
		982.4	1														
	0.8' - SLAG BASE (10.0")																
	VERY STIFE BROWNISH GRAY SILTY CLAY LITTLE	981.0	- 2 -														
	COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP	то															
	MOIST. DETROLEUM ODOR DRESENT IN SS 1		2	2 6	44	SS-1	3 00	2	3	8	40 47	37	19	18	20	A-6b (11)	
	-PETROLEOM ODOR PRESENT IN 33-1		- 3 -	3			0.00	_		Ū							
_																	
Ъ Ю.																	
20 (2)			- 4 -														
4-02																	1>112
4/N-1																	7474
201			- 5 -														
CTS			o	6 14	100	SS-2	4.00	2	4	8	40 46	35	18	17	17	A-6b (11)	1>112
ΘΩ				5													7676
3/PR		977.6	- 6 -														
l:\Gl8	VERY STIFF, BROWNISH GRAY CLAY, AND SILT, LITTL	E HIII															1>112
ר 0 - 0	COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST		6														7676
14:3			- 7 -	7 16	83	SS-3	3.50	-	-	-		-	-	-	29	A-6b (V)	1 LV 1 L
2/15				5													4>14
- 1/1		976.1															7676
DI	COARSE TO FINE SAND. TRACE FINE GRAVEL. MOIST		_ 8 _														1 LV 1 L
01.0	,,,,		5	5 13	67	SS 1	3 00								20		1>112
ΠD				5 5	07	00-4	5.00	_		-	- -	-	_		20		12 14
Ч		974.6	0														1 LV 1 L
JPIK.		974.0	—ЕОВ9														Li. N.i.
URN																	
<u>1-9</u>																	
GГО																	
NIN																	
TBC																	
ě																	
135																	
ă		IG															
- 1	NOTES. GROUNDWATER NOT ENCOUNTERED DURING DRILLIN																

OLINT OTC SMARING FRM / LOGGRE RU/RB AUMAGE AUTOMOTE CL 108 Me P2 348 Tel-408 FM START 91.14.0 EN.N. 91.42.0 SMARING FRM / LOGGRE SPT CUBANTOR 22.07.0 77.2 COORD 22.07.0 10.01	DIFENT OTIC SAMPLING BRM / LOGGER BIL R.B. MUMBER AUTOMNER AUTOMNER CLINE MEETING CLINE MEETING </th <th></th> <th></th> <th>T: PAV. REC</th> <th>. PROG M</th> <th>P 216.1-221.25</th> <th>DRILLING FI</th> <th>RM / OPERATOR</th> <th>:RI</th> <th>I / S.B.</th> <th>DRI</th> <th>LL RIG</th> <th>: MO</th> <th>BILE B-53 (</th> <th>(SN 624</th> <th>400)</th> <th>STAT</th> <th>FION /</th> <th>OFFS</th> <th>SET:</th> <th>16</th> <th>63+35</th> <th>/ 50.8'</th> <th>RT</th> <th>EXPLO</th> <th>RATION ID</th>			T: PAV. REC	. PROG M	P 216.1-221.25	DRILLING FI	RM / OPERATOR	:RI	I / S.B.	DRI	LL RIG	: MO	BILE B-53 ((SN 624	400)	STAT	FION /	OFFS	SET:	16	63+35	/ 50.8'	RT	EXPLO	RATION ID
OTF NO: THURD THUO: ALGO TO THO OF THUO: AUGUARTON TATE CUBRATON TATE TTT COOD TTT COOD <t< td=""><td>OTP-NO: TH-Lag RINO: H-Lag RINO:</td><td></td><td>CLIENT:</td><td></td><td>OTIC</td><td></td><td>SAMPLING F</td><td>FIRM / LOGGER:</td><td>RII</td><td>/ R.B.</td><td>HAN</td><td>MMER:</td><td></td><td>AUTOM</td><td>ATIC</td><td></td><td>ALIG</td><td>NMEN</td><td>NT:</td><td>CL</td><td>. I-76</td><td></td><td>MP:</td><td>219.8</td><td>6 B-4</td><td>14-21</td></t<>	OTP-NO: TH-Lag RINO: H-Lag RINO:		CLIENT:		OTIC		SAMPLING F	FIRM / LOGGER:	RII	/ R.B.	HAN	MMER:		AUTOM	ATIC		ALIG	NMEN	NT:	CL	. I-76		MP:	219.8	6 B- 4	14-21
STATE: 9444 END: 944 END:	START: BUARCH BUC SMATELIAL IS AMELING METHOD: SPT DERROY RATIO (%). 77.7 COORDE Exerts sub x 20080.500:E 106* 0.5* ASPHALT. MAD MOTES SPT DEPTHS SPT No REC SMARE HP HP Ge 03 F8 4 4. 1.0 HL HL No No REC SMARE HP HP Ge 03 F8 4 4. 1.0 HL		💙 ОТР NO	: 71-14-08	RII NO.:	N-14-020(2)	DRILLING M	ETHOD:	4.5" - CF	FA	CAL	IBRAT	ION DA	TE:	4/26/13		ELE\	/ATIOI	N:	972.6	6 (MSL	_)	EOB:	1	3.2 ft.	PAGE
MATERIAL DESCRIPTION AND NOTES ELEV. (5) DEPTHS SPTU (%) No REC [SAMPLE] (B) P GRADATION (%) AttreBERG (B) Acccord (CASSIG) PACK (CASSIG) 0.5'-ASPHALT (6'0') 972.1 972.1 971.2 971.4 970.4 <td>MATERIAL DESCRIPTION ADD OTES ELEV. MAD NOTES DEPTHS SPD (%) No. REC [SAMPLE] HP GRADATION (%) ATTERBERG No. CONCEPTED 0.5 - ASPHALT (0.07) 072.1 072.1 0.7 0.8 <</td> <td></td> <td>START:</td> <td>9/4/14</td> <td>END:</td> <td>9/4/14</td> <td>SAMPLING N</td> <td>METHOD:</td> <td>SPT</td> <td></td> <td>ENE</td> <td>ERGY F</td> <td>RATIO (</td> <td>%):</td> <td>77.7</td> <td></td> <td>coo</td> <td>RD:</td> <td></td> <td>526</td> <td>6375.9</td> <td>943 N,</td> <td>24288</td> <td>33.500</td> <td>E</td> <td>1 OF 1</td>	MATERIAL DESCRIPTION ADD OTES ELEV. MAD NOTES DEPTHS SPD (%) No. REC [SAMPLE] HP GRADATION (%) ATTERBERG No. CONCEPTED 0.5 - ASPHALT (0.07) 072.1 072.1 0.7 0.8 <		START:	9/4/14	END:	9/4/14	SAMPLING N	METHOD:	SPT		ENE	ERGY F	RATIO (%):	77.7		coo	RD:		526	6375.9	943 N,	24288	33.500	E	1 OF 1
AND NOTES ST2_0 UDEPTHS Rob Na (%) D D D D D D D D D D D D D <th< td=""><td>ADD NOTES GZA DEPTHS ROD No (%) ID (%) (%)</td><td></td><td></td><td>MATERIA</td><td>L DESCR</td><td>IPTION</td><td>-</td><td>ELEV.</td><td></td><td></td><td>SPT/</td><td></td><td>REC</td><td>SAMPLE</td><td>HP</td><td></td><td>GRAD</td><td>ATIO</td><td>)N (%</td><td>))</td><td>ATT</td><td>ERB</td><td>ERG</td><td></td><td></td><td>BACK</td></th<>	ADD NOTES GZA DEPTHS ROD No (%) ID (%) (%)			MATERIA	L DESCR	IPTION	-	ELEV.			SPT/		REC	SAMPLE	HP		GRAD	ATIO)N (%))	ATT	ERB	ERG			BACK
0.5' - ASPHALT (6.0') 972.1. 0.9' - CONCRETE (10.5') 971.2. 0.8' - SLAG BASE (9.5') 970.4. STIFF TO VERY STIFF, BROWN TO GRAY SAMDY SILT. 970.4. SOME CLAY, TRACE FINE GRAVEL, DAMP TO MOIST. 970.4. - -	0.5 - ASPHALT (6.07) 972.1 0.9 - CONCRETE (10.57) 971.2 0.8 - SLAG BASE (9.57) 970.4 STIFF TO VERY STIFF BROWN TO GRAY SANDY SUIT. 970.4 STIFF TO VERY STIFF BROWN TO GRAY SANDY SUIT. 970.4			Al	ND NOTES			972.6	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.8 - SLAG BASE (9.5') 3 TIFF TO VERY STIFF, BROWN TO GRAV SANDY SULT. SOME CLAY, TRACE FINE GRAVEL, DAMP TO MOIST. 4 5 3 10 39 SS-2 2.00 10 27 19 21 23 23 16 7 19 A48 (2) 5 4 5 12 39 SS-3 2.25	0.8 - SLAG BASE (9.5') STIFF TO VERY STIFF, BROWN TO GRAY SANDY SILT, SOME CLAY, TRACE FINE GRAVEL, DAMP TO MOIST.		0.5' - ASPHALT (0.9' - CONCRETE	5.0") (10.5")				972.1																		
STIFF TO VERY STIFF. BROWN TO GRAY SANDY SILT. SOME CLAY, TRACE FINE GRAVEL, DAMP TO MOIST. -3 -1 2 9 44 SS-1 1.50 7 20 12 29 32 28 18 10 16 A-4a (5) -4 -5 -5 -6 -2 4 5 10 39 SS-2 2.00 10 27 19 21 23 23 16 7 19 A-4a (2) 5 5 -5 -6 -2 4 5 12 39 SS-3 2.25 - - - - 16 A-4a (2) 5 - <	STIFF TO VERY STIFF, BROWN TO GRAY SANDY SLT. SOME CLAY, TRACE FINE GRAVEL DAMP TO MOIST.		0.8' - SLAG BASI	. (9.5")			, , ,	970.4		- 2 -																
$\begin{bmatrix} -4 & -5 & -5 & -5 & -5 & -5 & -5 & -5 &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŝPJ	STIFF TO VERY SOME CLAY, TR	STIFF, BRO ACE FINE G	WN TO G RAVEL, D	ray Sandy Damp to MC	SILT, DIST.			- - 3 -	1 2 5	9	44	SS-1	1.50	7	20	12	29	32	28	18	10	16	A-4a (5)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S\2014\N-14-020 (2).G								- 4 - - 5 -	5 3 5	10	39	SS-2	2.00	10	27	19	21	23	23	16	7	19	A-4a (2)	
964.4 EOB - 7 - 5 8 9 22 50 SS-4 3.00 17 A-4a (V) - 4 - 4 - 17 - 4 - 17 A-4a (V) - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	964.4 EOB	0 - U:\GI8\PROJECT								- 6 -	2 4 5	12	39	SS-3	2.25	-	-	-	-	-	-	-	-	16	A-4a (V)	
		.GDT - 1/12/15 14:3						964.4	500	- 7 - 	5 8 9	22	50	SS-4	3.00	-	-	-	-	-	-	-	-	17	A-4a (V)	
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 6.2'	NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 6.2'	2013 STD ODOT BORING LOG-TURNPIKE - OH DO	NOTES: GROUND	NATER NOT I	ENCOUNTE	RED DURING I	DRILLING: CA	VE-IN DEPTH @	6.2'																	

D ::)	PROJECT:	PAV. REC.	PROG N	/IP 216.1-221.25	DRILLING FIRM /		R:	II / J.K.			i:(CME-55 (SN	1 386345 ATIC	5)	STATIO	N / OFI	FSET:	16)9+87 /	/ 50.8'	LT 210.0		ATION ID
RI	OTP NO.:	71-14-08		N-14-020(2))D:	4.5" - Cl	FA		LIBRAT	ION DA	AUTON//	10/20/13	3	ELEVAT		964.	9 (MSL	K	ле. ЕОВ: ,	219.9	9 4.0 ft.	PAGE
	START:	12/9/14	_ END:	12/9/14	SAMPLING METH	IOD:	SPT		EN	ERGY F	RATIO ((%):	92		COORD	:	52	5878.5	90 N, 2	242926	67.290	E	10F1
		MATERIA	L DESCF	RIPTION		ELEV.		гне	SPT/	N	REC	SAMPLE	HP	G	RADAT	ION (%)	ATT	ERBE	RG		ODOT	BACK
		AN	D NOTES	3		964.9		113	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS F	3 SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
0.5'- ASF	PHALT (6.0	0")				964.4																	
1.2' - CO	NCRETE	(14.0")				963.2		- 1 -															
1.1' - SL/	AG BASE	(13.0")						- 2 -								_	+	-		-			$\begin{array}{c} 1 \\ 1 \\ - 1$
						962.1			63				-	-	- -		-	-	-	-	-	A-1-b (V)	
FINE SA	ND, LITTLI	E FINE GR	AY, LITTI AVEL, D/	LE COARSE AMP.		060.0		- 3 -	9 14	18	100	SS-1	4.5+	-		-	-	-	-	-	-	A-6a (V)	
						960.9	-EOB	<u> 4 </u>	·							<u> </u>		<u> </u>					12, 12

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: PAV. REC. PROG MP 216.1-221.25 DRILLING F	IRM / OPERATOR	RII / T.F.	DR	ILL RIG	MOE	BILE B-53	(SN 6244	400)	STAT	ION /	OFFSE	ET: _	17	2+37/	/ 50.8'	'LT	EXPLO	RATION ID
	CLIENT:OTICSAMPLING	FIRM / LOGGER:	RII / J.P.	HA	MMER:		AUTOM	ATIC		ALIGI	NMEN	IT:	CL	I-76	N	MP: _	220.0	D3 B -	44-22
	OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u> DRILLING N	/IETHOD:	4.5" - CFA	CA	LIBRAT	ION DA	TE:	4/26/13		ELEV	ATIO	N:	962.5	(MSL	.) E	EOB:		7.9 ft.	PAGE
	START: <u>8/15/14</u> END: <u>8/15/14</u> SAMPLING	METHOD:	SPT	EN	ERGY F	RATIO (%	%):	77.7		COOF	RD: _		525	667.1	30 N, 2	24294	00.649	E	10F1
	MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N.	REC	SAMPLE	HP	0	RAD	ATIO	N (%))	ATT	ERBE	ERG		ODOT	BACK
L	AND NOTES	962.5		RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI	FILL
	0.6' - ASPHALT (7.0") 1.0' - CONCRETE (12.0")	961.9																	
	0.3' - SLAG BASE (3.0")	960.9																	
	DENSE, LIGHT BROWN GRAVEL , TRACE COARSE TO FINE SAND, DAMP.		- 2 -	12	49	28	SS-1	_	_	_	_	_	_	_	_	_	7	A-1-a (V	
	-SANDSTONE FRAGMENTS PRESENT IN SS-1	959.1	- 3 -	13															
0.(3) 0.	SAND, TRACE FINE GRAVEL, MOIST.		- 4 - 4	4 5	13	80	55-2	4 5+	6	5	8	32	4 9	38	18	20	10	A-6b (12	
		957.6	-	5			00 2	1.0	0		U	02	-10			20		1100(12	
	VERY STIFF TO HARD, BROWN CLAY , SOME SILT, TRACE COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.		- 5 - 8 - 6 -	3 10 13	30	83	SS-3	4.00	1	2	4	24	69	47	20	27	20	A-7-6 (16	2 2 2 2 2 2 2 2 2 2 2 2 2 2
00:1-01:21:01		954.6	- 7 - 1 	16 20 23	56	100	SS-4	4.5+	-	-	-	-	-	-	-	-	23	A-7-6 (V	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT:	PAV. REC.	PROG N	ИР 216.1-221.25			R:	II / J.K.			i: (CME-55 (SN	1 386345	5)	STATIC			ET:	172	2+37 / 2	29.2' [RT	EXPLOF	ATION ID
KII	OTP NO.:	71-14-08		N-14-020(2)		D:	4.5" - C	FA -		ALIBRAT		AUTOM/ ATE:1	10/20/13		ELEVA		1 1:	062.2 (-60 MSL)	E	DB:	220.0	3 4.0 ft.	PAGE
	START:	12/10/14	_ END:	12/10/14			SPT			NERGY		(%):	92		COORI):		5256	24.44	0 N, 2	42933	32.960	E	1011
		MATERIA	L DESCR	RIPTION		ELEV.	DEPT	THS	SPT	N ₆₀	REC	SAMPLE	HP		RADA	TIO	N (%)	4		RBE	RG		ODOT	BACK
			DNOTES	5	× ^ ^	962.2			RQL	00	(%)	D	(tsf)	GR	CS F	S	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.5' - AS	PHALT (6	.0")				961.7																		
1.0' - CO	NCRETE ((12.0")				960.7		- 1 -																
1.0' - SL/	AG BASE	(12.0")																						
						959.7		2					-	-	-	-	-	-	-	-	-	-	A-1-b (V)	7 LV 7 L 7 X 7 X
VERY S ⁻ FINE SA	TIFF, BRO' ND, LITTL	WN SILTY E FINE GR	CLAY, SO AVEL, M	OME COARSI IOIST.	ЕТО			- 3 -	8 8 4	18	100	SS-1	3.75	-	_	_	_	-	_	_	_	-	A-6a (V)	
						958.2	—ЕОВ	4-																~ LV ~ L 7 LV 7 L 7 > L 7 2 7 2 2 7 2 2 7 2 7 2 7 2 7 2 7 2 7 2

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT: PAV. REC. PROG MP 216.1-221.25 D	DRILLING FIRM / OPERATOR:	RII / J.K.		ILL RIG	: <u> </u>	CME-55 (SN	386345)	STATION /		ET: _	174 1-80	4+87 /	50.8' LT		RATION ID 4-22B
OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u> D START: <u>12/9/14</u> END: <u>12/9/14</u> SA	DRILLING METHOD:	4.5" - CFA SPT		LIBRAT ERGY F	ION DA	TE: <u>1</u> %):1	0/20/13 92		ELEVATIO	N:	959.4 525	(MSL) 455.67) E0 70 N, 24	г. <u>2</u> ОВ: 429534.	4.5 ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 959.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	RADATIC	DN (% SI) CL			RG PI W	ODOT CLASS (GI)	BACK FILL
0.5' - ASPHALT (6.0") 1.1' - CONCRETE (13.0") 0.9' - SLAG BASE (11.0")	958.9															
MEDIUM STIFF, BROWN SILTY CLAY , TRACE COAR TO FINE SAND, TRACE FINE GRAVEL, MOIST.	2SE 956.9	- 2 - - 3 - - 4 -	9 2 3 3	8	25	SS-1	-	-		-	-	-	-		A-1-b (V) A-6b (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PF	OJECT:	PAV. REC.	PROG M	P 216.1-221.25	DRILLING FIRM	/ OPERATOF	R:R	II / S.B.	DR	ILL RIG	: MO	BILE B-53 ((SN 624	400)	STAT	ION /	OFFSE	T:	180	+85 / 5	50.4' F	RT	EXPLOR	ATION ID
	(Rii) ^{CL}		71 14 09		N 14 020(2)		1/LOGGER:	RII	/ R.B.		MMER:			ATIC				IT:	CL I-	-76 MSL)	MI	P: סר.	220.1		PAGE
		ρ ΝΟ Δρτ·	9/3/14		9/3/14	SAMPLING MET	ЮD НОD [.]	4.5 - C	<u>га</u>				∿	4/20/13				N	52.0 (5248)	1VIOL) 00 53	EC	ם. נ2077	c 76 457	. <u>э п.</u> Е	1 OF 1
ŀ	01	AINI						011				REC		: нр		RAD		N (%)	02-0			2311	0.+37		PACK
			AN	D NOTES			952.8	DEPT	THS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL /		PL	PI	wc	CLASS (GI)	FILL
ľ	0.6' - ASPH/	LT (7.5	")			\times																			
							952.2																		
	0.9' - CONC	RETE (10.5")			\sim																			
						\otimes			- 1 -																
							951.3																		
	0.8' - SLAG	BASE (9.0")																						
						\otimes	050.5		- 2 -																
ŀ	STIFF TO V	ERY ST	IFF. GRA	YISH BRO	WN TO BRO	DWN 🕅	950.5																		
	SILT AND C	AY, LI	TLÉ TO S	SOME CO	ARSE TO FI	NE				4															
	SAND, TRA	EIOI		NE GRAV	EL, DAMP.				- 3 -	2	5	50	SS-1	1.50	7	10	9	32	12 3	35	21	14	20	A-6a (9)	
										2														.,	
GPJ																									
0 (2).									- 4 -																
t-02(4															12°12 12°12
N-12										4	9	33	SS-2	1.50	11	14	12	28	35 3	33	21	12	18	A-6a (6)	JLV JL
2014									- 5 -	3															< - V < - V < - V
TS/2																									7676
JEC																									JLV JL
PRC									- 6 -	2	0		00.0	2 50									45	A C= ()()	$< , \vee < , \\ < , \vee < , $
GI8	-COAL FR/	GMEN	TS PRESE	ENT IN SS	S-3				0	3 4	9	56	55-3	3.50	-	-	-	-	-	-	-	-	15	A-6a (V)	72.72
																									JLV JL
4:30									-										_			_			$< , \vee < , \\ < , \vee < , $
/15 1										_															7272
1/12										5	23	72	SS-4	3.00	-	-	-	-	-	-	-	-	15	A-6a (V)	$\frac{1}{7}L^{\vee}\frac{1}{7}L^{\vee}$
- H										12															$< , \land < , < , < , < , <)$
T.GI							944.5	505	- 8 -																7272
DQ -							- <u>4</u>	-EOB						-!			!								
ġ.																									
ЯË																									
JRNI																									
Ц Ц																									
Ō																									
RING																									
BO																									
DOT																									
0																									
3 S ⁻																									
201																									

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: PAV. REC. PROG MP 216.1-221.25	DRILLING FIRM /	OPERATO	R: RII / T.F.	DF	RILL RIG	: <u>MO</u>	BILE B-53 (SN 6244	400)	STATIO	N / OFFS	SET:	19	90+95 / 5	51.1' L	Т	EXPLO	RATION ID
		SAMPLING FIRM	LOGGER	RII / J.P.	HA	AMMER:		AUTOMA	ATIC		ALIGNN	ENT:	CL	. I-76	MF	⊃:	220.38	3 B-4	4-24
	OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u>	DRILLING METHO	D:	4.5" - CFA	CA	ALIBRAT	ION DA	TE:4	4/26/13		ELEVAT	ION:	958.3	B (MSL	.) EC	DB:	8	.0 ft.	PAGE
	START: <u>8/15/14</u> END: <u>8/15/14</u>	SAMPLING METH	OD:	SPT	EN	NERGY F	RATIO (%):	77.7		COORD	:	524	154.9	26 N, 24	30466	6.714 E	E	1 OF 1
	MATERIAL DESCRIPTION		ELEV.	NEDTHS	SPT/	N	REC	SAMPLE	HP	Ģ	RADAT	10N (%	b)	ATT	ERBEF	RG		ODOT	BACK
	AND NOTES		958.3	DEI III3	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS F	S SI	CL	LL	PL	PI ۱	WC	CLASS (GI)	FILL
	0.5' - ASPHALT (6.0")																		
		XX	957.8		_														
	0.0 - CONCRETE (10.0)																		
			957.0	- 1 -	_														
	0.7' - SLAG BASE (8.0")		357.0																
			956.3	- 2 -															
	HARD, BROWN SILTY CLAY, LITTLE COARSE TO SAND TRACE FINE GRAVEL DAMP	FINE																	
	SAND, TRACET INE ORAVEL, DAMI .			_	2														
					5	14	67	SS-1	4.5+	3	4 8	37	48	34	18 1	16	16	A-6b (10)	
				- 3 -															
_			954.8	_															
С Э	HARD, BROWN CLAY, SOME SILT, TRACE COARS	ЗЕ ТО																	
0 (2)	FINE SAND, DAMP TO MOIST.			- 4 -	7														
t-02					9	21	61	SS-2	4.50	0	2 5	5 24	69	45	20 2	25	19	A-7-6 (15)	7272
N-12				_	- '	/													JLV JL
014/				- 5 -															4/1<
S/2																			7676
ECT				_	13														$ <, \vee <, $
ROJ					17	44	89	SS-3	4.50	-		_	-	-	-	- 1	22	A-7-6 (V)	7272
8/PI				- 6 -	17	7													JLV JL
D:/G			951.8																1>1 1>
- 0	MEDIUM DENSE, BROWN SILT, SOME COARSE T	O FINE		_															7676
14:3	SAND, TRACE CLAY, WET.	++++		- 7 -	12														
115		+++++++++++++++++++++++++++++++++++++++			10	26	89	SS-4	-	-		_	-	-	-	- 3	24	A-4b (V)	1>11>
1/12		++++		_	10	כ													7 LV 7 L
Ľ		+ + + + + + + + + + + + + + + + + + + +	950.3																$ <, \vee <, $
Ŀ.G		++++	000.0	—ЕОВ — 8 —															
ß																			
HO																			
Щ. Ч																			
NPI																			
TUR																			
ģ																			
Ц С																			
NN N																			
BO																			
G																			
О О																			
3 ST																			
201:																			
	NOTES: GROUNDWATER NOT ENCOUNTERED DURING	DRILLING																	

	PROJECT: PAV. REC. PROG MP 216.1-221.2	5 DRILLING FIRM / OPERATOR	: RII / S.E	З.	DRILL	RIG:	MOBI	LE B-53 (\$	SN 6244	400)	STATIC	N / OFI	SET:	20	00+02	/ 50.0'	RT		ATION ID
	(Rii) CLIENT:OTIC	SAMPLING FIRM / LOGGER:	RII / R.B		HAMM	IER: _		AUTOMA	TIC		ALIGNN	IENT:	С	L I-76	I	MP:	220.5	6 B-4	4-25
	OTP NO.: <u>71-14-08</u> RII NO.: <u>N-14-020(2)</u>	DRILLING METHOD:	4.5" - CFA		CALIBI	RATIO	N DAT	E:	4/26/13		ELEVA	ION:	971.3	3 (MSI	_)[EOB:		8.5 ft.	
	START: <u>9/3/14</u> END: <u>9/3/14</u>	SAMPLING METHOD:	SPT		ENER	GY RA	TIO (%):	77.7		COORE	:	52	3412.4	185 N, I	24309	96.970	E	
	MATERIAL DESCRIPTION	ELEV.	DEPTHS	SF			RECS	AMPLE	HP	G	RADA		%)	ATT	ERBE	ERG		ODOT	BACK
	AND NOTES	971.3	1	R	JD		%)	U	(tst)	GR	CS F	s si	CL		PL	Ы	WC	02400 (01)	
	1.3' - CONCRETE (16.0")	970.8	_	_															
				1 —															
	0.7' - SLAG BASE (8.5")	969.5	- 2	2 —															
		968.8	_																
sPJ	HARD, MOTTLED BROWN AND GRAY SILT AND C LITTLE COARSE TO FINE SAND, DAMP.	CLAY,	- : -	3 -4	4 1 8	16	56	SS-1	4.5+	0	5 8	3 41	46	32	21	11	16	A-6a (8)	
(2).G		967.3		4															
N-14-020	HARD, MOTTLED BROWN AND GRAY TO BROWI CLAY, LITTLE COARSE TO FINE SAND, TRACE F GRAVEL, DAMP.		-	-9															$7L^{V}7L$ $7>^{V}7L$ $7>^{V}7L$
CTS\2014\			-	5 —	15	35	44	SS-2	4.5+	2	6	5 42	45	37	21	16	16	A-6b (10)	1>1 1> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
:30 - U:\GI8\PROJE			(6 7 1	10 2 12	28	67	SS-3	4.5+	-			-	-	-	-	16	A-6b (V)	
T.GDT - 1/12/15 14			 {	7 — 12 8 —	2 3 16	36	67	SS-4	4.5+	-			_	-	-	-	16	A-6b (V)	
2013 STD ODOT BORING LOG-TURNPIKE - OH			EOB		,														
	NOTES: GROUNDWATER NOT ENCOUNTERED DURING	DRILLING																	

PROJECT: PAV. REC. PROG MP 216.1-2	1.25 DRILLING FIRM /		RI	1 / T.F.	DF		: MO	BILE B-53 (S	SN 6244	400)	STAT	ION /	OFFSET	:	209+53	/ 51.2'	LT		RATION ID 4-26
OTP NO : 71-14-08 BIL NO : NL14-02		, 2000LK. חר	4 5" - Cl	7 J.F. =Δ					1/26/13		FLEV		1 J·	1 2 (M	5	FOR	220.7	4 1 7 ft	PAGE
START: 8/18/14 END: 8/18/14	SAMPLING METH	IOD:	SPT	<u> </u>		NERGY F	RATIO (%):	77.7		COOF	RD:	1. <u>- 574</u>	522832	.041 N.	24317	56.377	E	1 OF 1
MATERIAL DESCRIPTION		ELEV.			SPT/	1	RFC	SAMPLE	HP	G	RAD		N (%)	AT	TERB	ERG		ODOT	BACK
AND NOTES		974.2	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI CI	. LL	PL	PI	WC	CLASS (GI)	FILL
0.4' - ASPHALT (5.0")	\sim	073.8																	
0.9' - CONCRETE (11.0")		> 010.0																	
		972.9		- 1 -															
1.3' - SLAG BASE (16.0")																			
				- 2 -															
		971.6		L															
SHALE: GRAY, HIGHLY WEATHERED.		071.0	—TR—																5
				- 3 -	9														< L 1< L
					26 50/3		80	SS-1	-	-	-	-	- -	-	-	-	7	Rock (V)	TLYTL
					00/0														
				- 4 -															<1 1 < 1
				.															JLV JL
AUGER REFUSAL @ 4.7'		969.5	-FOB	<u> </u>															< V < V

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT	PAV. REC	. PROG N	/IP 216.1-221.25	DRILLING FIRM	OPERATO	R:F	RII / S.B.	DR	ILL RIG	: MO	BILE B-53 ((SN 624	400)	STAT	ION / C	OFFSET:	2	17+83	/ 51.0'	RT	EXPLOR	ATION ID
Rii	CLIENT:		OTIC		SAMPLING FIRM	/ LOGGER:	R	I / R.B.	HAI	MMER:		AUTOM	ATIC		ALIGI	NMENT	r: <u> </u>	CL I-76		MP:	220.8	9 B-4	4-27
	OTP NO.:	71-14-08	_ RII NO.:	N-14-020(2)	DRILLING METH	OD:	4.5" - 0	FA	CAI	LIBRAT	ION DA	TE:	4/26/13	}	ELEV	ATION	: 964	.8 (MS	SL)	EOB:		7.6 ft.	PAGE
	START:	9/2/14	_ END: _	9/2/14	SAMPLING MET	HOD:	SP	Γ	EN	ERGY F	ratio (%):	77.7		COO	RD:	5	22211.	512 N,	24323	16.316	E	1 OF 1
		MATERIA	L DESCR	RIPTION		ELEV.	DEP	THS	SPT/	N.	REC	SAMPLE	HP	0	GRAD	ATION	۷ (%)	AT	TERB	ERG		ODOT	BACK
		AN	ID NOTES	S	N / N /	964.8	BEI		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.4' - AS	SPHALT (4	1.5")				964.4																	
0.4' - CC	DNCRETE	(5.5")				964.0																	
1.0' - SL	AG BASE	(12.0")						- 1 -															
						963.0																	
HARD, I	BROWN A	ND BLACK	SILT ANI	D CLAY , LITTI E GRAVEL D				- 2 -															
00/ 11 10		- 0/ a tb, 11		L 010112L, D					5	32	33	SS-1				_					12	A-62 (\/)	
									15	02		00-1									12	A-00 (V)	
						961.5	тр	- 3 -															
SHALE:	BLACK A	ND BROW	N TO DAF	rk gray, hig	GHLY	-	— IR—	-															
WEATH	ERED.								12														
								4	17 30	61	44	SS-2	-	-	-	-	- -	-	-	-	8	Rock (V)	7 LV 7 L
						-		-															7 2 7 7 Z
								- 5 -															
									20														7272
						-			35 50/5"	-	71	SS-3	-	-	-	-	- -	-	-	-	8	Rock (V)	JLV JL
								- 6 -															7 LV 7 L
																							$\langle , \vee \rangle$
						-			25			00.4									-	De els (14)	7272
								- 7 -	45 50/3"	-	20	55-4	-	-	-	-	- -	-	-	-	э	ROCK (V)	7676
						957.2	— FOB	_															
							LOD																
NOTES:	GROUNDV	VATER NOT E	ENCOUNTE	ERED DURING D	RILLING																		
ABANDO		THODS, MAT	ERIALS, QL	JANTITIES: PL	ACED 385 LBS	CONCRETE;	COMPAC	TED WITH	THE AU	GER S		TTINGS											

APPENDIX I-E

SUBGRADE STABILIZATION AND ADCP SUMMARY

S	Iborad	e Analysis	(Global O	ptions	5							Classi	ficatio	n Cour	nts by	y Sar	nple							Surface Class	% Bor	rings	% St	urface	Rig ER
Ŭ	12.00	12/20/11	320	R&R	Op	tion	R	1a	1b 1	3	3a	2-4	2-5 2	2-6 2	$\frac{2-7}{0}$ 4	la 1	4b	5	6a 36	6b 34	7-5	7-6	8a	8b	2-5 0	N _{60L} <= 5	4%	37	20%	A 78
v	. 12.00	12/30/11		LS	Op	tion	7%	2%	1%	Ū	Ū	Ū	1	1%	4	%	3%	Č	37%	35%	Ŭ	10%	, °	, in the second	5 0	>=20	19%	1 70	3078	c
Des	ign	6		LKD	Op	tion	7%				49	%								89%)				7-5 0	M+	52%			D
CBF	2	•	206	Depth	<u>1</u>	2							N _{ee} N				PI		Clav		м	Man	-	GI	7-6 1 4%	R	19%		Surfaco	E
Tota	l Borinas	27							Avera	ae		Г	25.1 1	5.1		1	15.9	Г	37.8		16.2	14.9	9	9.01	8b 0			19	3011ace 9.9	G
PID	5	71-14-08					_		Maxim	านท			123	30	47	29	27	50	69	93	29	26	6	16	R 2 7%			2	7	н
Loca	ation	MP 2	16.25 to	MP 221	.00	1			Minim	um			5	5	23	16	7	21	16	41	5	6	6	0	-			1	2	
		Borin	g	1		0	Subo	grade	+ r	Stand	dard P	enetra	ation	_	Ph	ysica	I Cha	aracte	istics		Moi	sture	C	ass	Comments	Prob	lem	Unde	ercuts	Analysis
#	B #	Boring Loca	ation	Depth	То	Fill	Depth	n To	n ₂	n ₃	Ν	Rig	N ₆₀ N	1 _{60L}	LL P	۲L	ΡI	% Silt	% Clay	Р 200	М	M _{OP}	DOT	GI		W/ Class	MN	Class	MN	
1	B-44-01	Sta. 541+48, 51	.2' Rt.	1.9	3.4	-1.9	0.0	1.5	5	5	10	А	13								17	14	4 6a	8						
		CL I-80		3.4	4.9		1.5	3.0	3	3	6		8		32	19	13	42	35	77	16	14	4 6a	9	Sulfate Content=		Ν		18	Avg. GI = 8
		N: 540296.658		4.9	6.4		3.0	4.5	3	3	6		8		31	22	9	50	30	80	29	17	7 4b	8	687 ppm	4b	N	36	18	CBR = 7
2	B-44-02	E: 2416901.511 Sta 550+77 50	8'It	6.4 1.9	3.4	-1.9	4.5	6.0	4	5	9	А	12	8	33	17	16	40	37	77	17	14	4 6a	8			N		18	
-	5 02	CL I-80		3.4	4.9		1.5	3.0	2	6	8		10		35	17	18	40	37	77	21	16	6 6b	11	Sulfate Content=		N		15	Avg. GI = 10
		N: 539813.897		4.9	6.4		3.0	4.5	5	6	11		14								22	16	6 6b	10	213 ppm		MN		12	CBR = 6
		E: 2417701.748		6.4	7.9		4.5	6.0	9	9	18		23	8							15	16	6 6b	10					10	
3	B-44-03	Sta. 558+33, 48	6.1' Rt.	1.9	3.4	-1.9	0.0	1.5	3	3	6	A	8		38	19	19	42	35	77	23	16	6b	12	Sulfata Contant-		N		18	$\Delta v \sigma C = 10$
		CL 1-00 N: 539276 653		3.4 4 9	4.9 6.4		1.5	3.0 4.5	3	4	9		9 12		34	19	15	47	30	03	23 22	14	+ ba	10	653 ppm		IN MN		10	Avg. $GI = 10$ CBR = 6
		E: 2418242.326	;	6.4	7.9		4.5	6.0	11	17	28		36	8							14	14	4 6a	8	ooo ppin				12	OBIC - 0
4	B-44-04	Sta. 5+17, 51.8	Lt.	1.9	3.4	-1.9	0.0	1.5	6	6	12	А	16		32	17	15	43	39	82	15	14	4 6a	10						
		CL I-80		3.4	4.9		1.5	3.0	9	11	20		26		30	17	13	42	35	77	16	14	4 6a	9	Sulfate Content=					Avg. GI = 9
		N: 538687.089		4.9	6.4		3.0	4.5	11	10	21		27	10							14	14	4 6a	8	500 ppm	46		20		CBR = 6
F	B-44-05	Sta 14+46 52	1' Rt	1.8	3.3	-18	4.5	1.5	5	7	10	А	16	10	30	17	13	43	35	78	15	14	40 40	9		40	IVI	30		
	2 00	CL I-80		3.3	4.8		1.5	3.0	5	7	12		16		38	20	18	34	50	84	17	16	6 6b	11	Sulfate Content=					Avg. GI = 9
		N: 538040.665		4.8	6.3		3.0	4.5	10	6	16		21								14	14	4 6a	8	3,680 ppm					CBR = 6
		E: 2419854.420		6.3	7.8		4.5	6.0	7	7	14		18	16							15	14	4 6a	8						
6	B-44-06	Sta. 23+75, 51.0	0' Lt.	1.9	3.4	-1.9	0.0	1.5	4	5	9 11	A	12		33	19	14	34	24	58	18	14	4 6a	6	Sulfata Contant-		MN		12	$\Delta v \sigma C = 0$
		CL 1-00 N: 537558 797		3.4 4 9	4.9 6.4		1.5	3.0 4.5	с 8	8	16		21		30	17	10	39	40	79	17	16	6 6b	10	700 ppm					Avg. $GI = 9$ CBR = 6
		E: 2420655.340	1	6.4	7.9		4.5	6.0	8	11	19		25	12							14	14	4 6a	8	roo ppin					OBIC - 0
7	B-44-07	Sta. 33+04, 52.	7' Rt.	1.7	3.2	-1.7	0.0	1.5	7	8	15	А	19		29	18	11	37	27	64	12	14	4 6a	6						
		CL I-80		3.2	4.7		1.5	3.0	7	8	15		19		43	29	14	25	16	41	14	20	6 7-6	2	Sulfate Content=					Avg. GI = 9
		N: 536912.572		4.7	6.2		3.0	4.5	11	9	18		23	10							19	18	7-6	14	520 ppm					CBR = 6
8	B-44-08	Sta. 42+33. 51.6	6' Lt.	1.9	3.4	-1.9	0.0	1.5	4	6	10	А	13	19	32	16	16	42	34	76	15	16	6 6b	14						
		CL I-80		3.4	4.9		1.5	3.0	6	8	14		18		30	18	12	31	18	49	8	14	4 6a	3	Sulfate Content=					Avg. GI = 8
		N: 536423.233		4.9	6.4		3.0	4.5	10	10	20		26								14	16	6 6b	10	1,033 ppm					CBR = 7
\vdash	D 44.00	E: 2422128.748		6.4	7.9	4.5	4.5	6.0	6	5	11	٨	14	13							16	16	6 6b	10			N			
	в-44-09	Sta. 51+62, 52.8	o Kt.	1.5	3.0 4.5	-1.5	0.0	1.5	3	4	13	А	9 17		33	18	15	46	34	80	15	1.	1 6a	10	Sulfate Content-		IN			Avg GI - 7
		N: 535713.144		4.5	6.0		3.0	4.5	11	11	22		28		32	19	13	42	33	75	19	14	4 6a	9	3,146 ppm					CBR = 7
		E: 2422735.960		6.0	7.5		4.5	6.0	11	14	25		32	9			-				12	14	4 6a	8						
10	B-44-10	Sta. 60+89, 60.5	5' Lt.	2.0	3.5	-2.0	0.0	1.5	8	6	14	А	18	T	29	18	11	42	25	67	12	14	4 6a	7						
		CL I-80		3.5	5.0		1.5	3.0	8	8	16		21		24	10	15	40	24	00	14	14	4 6a	8	Sulfate Content=					Avg. GI = 8
		F: 2423427 015		5.0	0.0 8.0		3.0 4.5	4.5	6	7	13		17	17	31	10	15	40	34	80	10	14	+ ba	10	1,153 ppm					CBR = 7
11	B-44-11	Sta. 70+10, 17.4	4' Rt.	1.3	3.1	-1.3	0.0	1.8	50		50	А	65								17		R	0		BR		24		
1		CL I-80																												Avg. GI = 0
		N: 534281.174																												CBR = 12
10	D 44 40	E: 2423887.256	0'1+	10	2.2	1.0	0.0	1 5	4	0	10	٨	16	30	22	16	17	46	22	70	17	4/	C Ch	14						
12	D-44-12	CL 1-80	J LI.	3.3	3.3 5.1	-1.8	0.0	1.5	4 50	8	1Z	A	10 65		33	10	17	40	32	78	5	16	R	11	Sulfate Content-	BR		24		Avg. GI = 11
		N: 533530.531		0.0	5.1		1.5	5.5	50		50		00								3				800 ppm	DIX		27		CBR = 6
		E: 2424455.694												16																
13	B-44-13	Sta. 89+17, 26.	7' Rt.	2.2	3.4	-1.6	0.6	1.8	2	23	25	А	32									(6 1a	0						
		CL I-80		3.4	3.7		1.8	2.1													12		R			BR		24		Avg. $GI = 0$
1		E: 2424896.555					1							30																CDR = 12
					_																		-							

		Boring				Sub	grade		Stan	dard F	Penetra	ation		Р	hysica	al Ch	aracte	ristics		Mois	sture	Cla	ass	Comments	Probl	lem	Unde	ercuts	Analysis
					Cut		•										%	%	Р			Ohio			w/	w/	UC	UC	· · ·
#	B #	Boring Location	Depth	n To	Fill	Depth	h To	n ₂	n ₃	Ν	Rig	N ₆₀ N	60L	LL	PL	ΡI	Silt	Clay	200	М	MOPT	DOT	GI		Class	MN	Class	MN	
14	B-44-14	Sta. 98+06, 50.2' Lt.	1.9	3.4	-1.9	0.0	1.5	2	3	5	А	6		34	16	18	48	36	84	23	16	6b	11			Ν		24	
		CL I-80	3.4	4.9		1.5	3.0	6	6	12		16		34	16	18	45	40	85	23	16	6b	11	Sulfate Content=		м			Avg. GI = 10
		N: 531952.166	4.9	6.4		3.0	4.5	10	9	19		25								16	14	6a	8	60 ppm					CBR = 6
45	D 44 45	E: 2425436.045	6.4	7.9	2.0	4.5	6.0	13	13	26	^	34	6	4.4	10	25	27	47	0.4	13	14	6a	8						
15	D-44-15	SIA. 107+30, 29.3 KI.	2.0	3.5	-2.0	0.0	1.5	4	0	14	A	10		44 25	17	20 10	31	47	04	10	10	7-0 6h	15	Sulfata Contant-					Ave $CI = 12$
		N: 531121 536	5.0	6.5		3.0	4.5	11	12	23		30		55	17	10	43	41	04	16	16	6b	10	540 nnm					CBR = 5
		F: 2425865 908	6.5	8.0		4.5	6.0	14	19	33		43	13							13	16	6b	10	540 ppm					ODIC = 5
16	B-44-16	Sta. 121+84, 59.4' Lt.	1.8	3.3	-1.8	0.0	1.5	5	7	12	А	16		29	17	12	32	23	55	10	14	6a	5						
		CL I-76	3.3	4.8		1.5	3.0	6	7	13		17		39	26	13	28	24	52	15	21	6a	5	Sulfate Content=					Avg. GI = 6
		N: 529945.567	4.8	6.3		3.0	4.5	6	6	12		16								17	16	6b	10	1,660 ppm					CBR = 7
		E: 2426712.442	6.3	7.8		4.5	6.0	10	9	19		25	16							13	10	2-6	2						
17	B-44-17	Sta. 125+87, 29.7' Rt.	1.9	3.4	-1.9	0.0	1.5	4	6	10	A	13		38	18	20	41	47	88	16	16	6b	12	Oulfate Oratest					Aug. 01 44
		OL 1-70 N: 520557 468	3.4	4.9		1.5	3.0	14	19	32		23 /1		30	17	10	41	44	60	14	10	6b	10	A20 ppm					Avg. $GI = 11$
		F: 2426851 902	6.4	79		4.5	4.J 6.0	20	26	46		60	13							13	16	6b	10	420 ppm					OBIX = 0
18	B-44-18	Sta. 135+22, 50.8' Lt.	1.9	3.4	-1.9	0.0	1.5	4	6	10	А	13	10	40	17	23	43	43	86	21	16	6b	13			MN		12	
		CL I-76	3.4	4.9		1.5	3.0	7	8	15		19		36	17	19	43	40	83	14	16	6b	12	Sulfate Content=					Avg. GI = 11
		N: 528809.379	4.9	6.4		3.0	4.5	15	15	30		39								19	16	6b	10	800 ppm					CBR = 6
		E: 2427418.858	6.4	7.9		4.5	6.0	11	10	21		27	13							12	16	6b	10						
19	B-44-19	Sta. 144+39, 29.4' Rt.	2.0	3.5	-2.0	0.0	1.5	5	13	18	А	23		29	18	11	40	31	71	16	14	6a	8						
		CL I-76	3.5	5.0		1.5	3.0	10	12	22		28		42	18	24	40	48	88	18	18	7-6	14	Sulfate Content=					Avg. GI = 10
		N: 527990.578	5.0	6.5		3.0	4.5	10	12	22		28	22							15	14	6a	8	420 ppm					CBR = 6
20	B-44-20	E. 2427040.430 Sta 153±70 51 0'1 t	2.1	4.6	-21	4.5	2.5	2	3	20	Δ	6	23	37	10	18	40	47	87	20	14	6b	0			N		24	
20	D-44-20	CL 1-76	4.6	6.1	-2.1	2.5	4.0	6	5	11	А	14		35	18	17	40	46	86	17	16	6b	11	Sulfate Content=				27	Avg $GI = 12$
		N: 527238.756	6.1	7.6		4.0	5.5	7	5	12		16								29	18	7-6	14	820 ppm		м			CBR = 5
		E: 2428409.613	7.6	9.1		5.5	7.0	5	5	10		13	6							20	16	6b				MN		12	
21	B-44-21	Sta. 163+35, 50.8' Rt.	2.2	3.7	-2.2	0.0	1.5	2	5	7	А	9		28	18	10	29	32	61	16	13	4a	5			Ν		16	
		CL I-76	3.7	5.2		1.5	3.0	3	5	8		10		23	16	7	21	23	44	19	11	4a	2	Sulfate Content=		N		15	Avg. $GI = 4$
		N: 526375.943	5.2	6.7		3.0	4.5	4	5	9		12								16	10	4a	5	253 ppm		MN		12	CBR = 8
22	P 44 22	E: 2428833.500	6.7	8.2	10	4.5	6.0	25	12	17	٨	22	9							1/	10	4a	5			M			
22	D-44-22	CL I-76	3.4	3.4 4.9	-1.9	1.5	3.0	25	5	10	A	49 13		38	18	20	32	49	81	19	16	6b	12	Sulfate Content=					Avg $GI = 11$
		N: 525667.130	4.9	6.4		3.0	4.5	10	13	23		30		47	20	27	24	69	93	20	18	7-6	16	1.493 ppm					CBR = 6
		E: 2429400.649	6.4	7.9		4.5	6.0	20	23	43		56	13							23	18	7-6	14	7					
23	B-44-23	Sta. 180+85, 50.4' Rt.	2.3	3.8	-2.3	0.0	1.5	2	2	4	А	5		35	21	14	32	42	74	20	16	6a	9			N		27	
		CL I-76	3.8	5.3		1.5	3.0	4	3	7		9		33	21	12	28	35	63	18	16	6a	6	Sulfate Content=		N		16	Avg. GI = 8
1		N: 524899.537	5.3	6.8		3.0	4.5	3	4	7		9	_							15	14	6a	8	960 ppm		N		16	CBR = 7
04	P 44 04	E: 2429776.457	6.8	8.3	2.0	4.5	6.0	6	12	18	٨	23	5	24	10	10	07	40	05	15	14	6a	8				 		
24	D-44-24	CL 1-76	2.0	3.5 5.0	-2.0	1.5	1.5	0	0	16	A	21		34 45	20	25	24	40 60	60 CO	19	19	7-6	10	Sulfate Content-					Avg $GI = 13$
		N: 524154.926	5.0	6.5		3.0	4.5	17	17	34		44		75	20	25	24	03	33	22	18	7-6	14	500 ppm					CBR = 5
		E: 2430466.714	6.5	8.0		4.5	6.0	10	10	20		26	14							24	10	4b		ooo ppiii	4b	м	36		05.1 - 0
25	B-44-25	Sta. 200+02, 50.0' Rt.	2.5	4.0	-2.5	0.0	1.5	4	8	12	Α	16		32	21	11	41	46	87	16	16	6a	8						
		CL I-76	4.0	5.5		1.5	3.0	12	15	27		35		37	21	16	42	45	87	16	16	6b	10	Sulfate Content=					Avg. GI = 10
1		N: 523412.485	5.5	7.0		3.0	4.5	10	12	22		28								16	16	6b	10	407 ppm					CBR = 6
	D 44 00	E: 2430996.970	7.0	8.5	2.0	4.5	6.0	12	16	28	٨	36	16		_					16	16	6b	10		DD		24		
26	B-44-26	Sta. 209+53, 51.2° Lt.	2.6	4.7	-2.6	0.0	2.1	26	50	76	A	98								'		ĸ			BR		24		$A_{VG} = 0$
		N: 522832.041																											CBR = 12
		E: 2431756.377											30																0011-12
27	B-44-27	Sta. 217+83, 51.0' Rt.	1.8	3.3	-1.8	0.0	1.5	10	15	25	А	32								12	14	6a	8						
		CL I-76	3.3	4.8		1.5	3.0	17	30	47		61								8		R		Sulfate Content=	BR		24		Avg. GI = 8
		N: 522211.512	4.8	6.3		3.0	4.5	35	50	85		110	~							8		R		800 ppm	BR		24		CBR = 7
L		E: 2432316.316	6.3	7.8		4.5	6.0	45	50	95		123	30							5		R			BR		24		

						Automated Dynamic Cone Penetrometer Summa (ASTM D6951)	ry
R	NOTLY	6350 Col Telep Fax N	Presidenti lumbus, Ol ohone: (614 umber: (61	ial Gatew hio 43231 4) 823-49 4) 823-49	ay 49 990	PROJECT Ohio Turnpike Pavement Replacement Program LOCATION Trumball/Mahoning County, Ohio - MP 216.25 to 22 RII JOB No. N-14-020(2) OTC PROJECT No. 71-14-08 ADCP No. B-44-01 DATE TEST PERFORMED 8/19/2014	21.0
	Test Location Surface Ele Testing Per Surface Mai Test Elevati	on: vation: sonnel: t'l / Thick.: on:	Sta. 541+48 996 ft msl Garret F. Asphalt/Cor 994.08 ft m	3, 51.2' Rt. ncrete/Slag sl	, 23 in	Hammer Type: Vertek Trailor Mounted Hammer Weight: 17.6 lb Drop Height: 22.6 in Output File Name: N/A Termination Depth: 30.24 in	
		ADCP Su	ummary			Graphical Penetration Rate Plot	
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Denotes Top of Subgrade CBR 1 10 100 1,0	000
4	2.28	58.00	14.50	14.50	14.6		
4	3.86	40.00	10.00	10.00	22.2	-	
6 5	6.06 8.19	56.00	9.33	9.33	23.9	-	
4	10.12	49.00	12.25	12.25	17.6		
3	12.32	56.00	18.67	18.67	11.0		
2	14.09	45.00	22.50	22.50	6.8		
2	15.91	46.00	23.00	23.00	6.5	- 1 🔪 🏓 🗌 🗌	
2	20.87	57.00	28.50	28.50	4.3		
3	25.28	112.00	37.33	37.33	2.5		
3	30.24	126.00	42.00	42.00	2.0		
						-1 1 T 1 -1	
						- ă]	
						36	
						-1 1 $ $ $ $ $ $ $ $ $ $	
						4 1	
						Avg. PR = 20.99 mm/blow	
Notes:		l	ļ				0
						Penetration Rate (mm/blow)	

						A	uton	nated D)ynamio (/	Cone	Penetro 6951)	ometer S	Summa	ary
R	ESOURCE INTERNET	6350 Co Telep Fax N) President lumbus, Ol bhone: (614 lumber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	JEC ATIC OB N P No E TE	T <u>O</u> N <u>T</u> No. <u>N</u> D. ST PER	hio Turnp rumball/M -14-020(2 FORME[ike Paver ahoning () O B-4 D <u>8/1</u>	nent Repl County, Ol TC PROJ 4-02 3/2014	acement Pi hio - MP 21 IECT No.	rogram 6.25 to 71-14-(221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 550+77 1000.3 ft m Garret F. Asphalt/Cor 998.38 ft m	7, 50.8' Lt. sl ncrete/Slag sl	, 23 in		Ha Ha Dru Ou Te	ummer Ty ummer W op Heigh utput File rminatior	/pe: eight: t: Name: n Depth:	Ver 17. 22. N/A 30.	tek Trailc 6 lb 6 in 24 in	or Mounted	k	
		ADCP Su	ummary						Graphic	al Penetra	ation Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes 0 0 +	Top of Sub	ograde 1	C ,	BR 10	100	1	,000
2 3 2	1.93 4.69 7.56	49.00 70.00 73.00	24.50 23.33 36.50	24.50 23.33 36.50	5.8 6.3 2.6	-	U -			1				
2	12.28 14.88	120.00 66.00	60.00 33.00	60.00 33.00	1.0 3.2		6 -			×				_
2	16.93	52.00	26.00	26.00	5.1		-			x				
2	18.62 20.39	43.00	21.50 15.00	21.50 15.00	7.5 14.1	_	-							
3	22.13	44.00	14.67	14.67	14.4		12						\geq	
5 6	24.02	48.00	9.60	9.60	23.2		-							
5	28.07	50.00	10.00	10.00	22.2		-							
6	30.24	55.00	9.17	9.17	24.4	-	18			X				
							-							
						(in)	-		I		1			
						uo	24							
						trati	24 -							
						ene	-	1			· 7			
						of P	-	1			1			
						th (30	-			•			
						Dep								
						-	-							
						1	36							_
						_	-							
						1	1							
							42							
]	-							
						4	1							
						-	48							
						1]					- Por stt'	n Det-	1
						_	-	Avg. PF CBR = 7	k = 22.47 n 7	1m/blow		-Penetratio	m kate	
						1	54							
Notes:				•		1	0	1	0 2	0 :	30 4	40 50 (blass)	0	60
									Penel	ration R	ate (mm/	(wola		

						Aı	utor	nated	Dynami (/	c Cone ASTM D	Penetro 6951)	ometer Su	ımma	iry
R	ENOLUTION NEWS	6350 Co Telep Fax N	Presidenti lumbus, Ol hone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRO LOC RII J ADC DAT	DJEC ATIC OBI PNC ETE	DN DN No. 0. EST PEI	Dhio Turn <u>p Trumball/M</u> N-14-020(2 RFORMEI	bike Paver <u>Iahoning (</u> 2) O ⁻ <u>B-4</u> D <u>8/1</u>	nent Repla County, Ol TC PROJ 4-03 9/2014	acement Pro hio - MP 216 ECT No. 7	gram .25 to 2 1-14-0	221.0 8
	Test Locatio Surface Elev Testing Pers Surface Mat Test Elevatio	n: vation: sonnel: 'I / Thick.: on:	Sta. 558+33 1002.5 ft ms Garret F. Asphalt/Cor 1000.58 ft n	8, 48.1' Rt. sl ncrete/Slag nsl	, 23 in		Ha Ha Dr Ou Te	ammer 1 ammer 1 op Heig utput Fil erminatio	ype: Veight: ht: Name: on Depth:	Ver 17.1 22.1 N/A 25.3	tek Trailc 6 lb 6 in 39 in	or Mounted		
		ADCP Su	immary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes	Top of S	ubgrade	CI	BR 1	00	1	,000
1	1.69	43.00	43.00	43.00	1.9									
2	3.90 6.46	56.00 65.00	28.00 32.50	28.00	4.4		-		\sim					
2	9.09	67.00	33.50	33.50	3.1		-		7					
2	13.11	102.00	51.00	51.00	1.3		6 -		ŧ.		•			_
2	20.43	95.00 91.00	47.50	47.50	1.5	-	-							
2	23.98	90.00	45.00	45.00	1.7		-	/	T					
1	25.39	36.00	36.00	36.00	2.7		12 -	_/_						_
						ion (in)	18 -	I						
						Penetrat					•			
						οί	30							
						epth	-							
						Ď	-							
]	-							
						-	36 -							
]							
						1	-							
							42 -							
						-	-							
							-							
							-							
						-	48 -							
]	-							
]	-	Avg. F	R = 40.22 r	nm/blow		-Penetration	Rate	
							54		<u> </u>			-свк		
Notes:			I				0)	10 2	20 3	30 4	40 50		60
									Pene	tration R	ate (mm/	/blow)		

						A	utor	nated I	Dynamie (/	c Cone ASTM D	Penet 6951)	tromete	r Summ	ary
R	NOILN'	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB I IOB I IOB I IOB I IOB I	T <u>(</u> DN <u>1</u> No. <u>No.</u> D. EST PER	Dhio Turnp Trumball/M I-14-020(2 RFORMEI	ike Paver lahoning (2) O ⁻ <u>B-4</u> D <u>8/1</u>	ment Re County, TC PRC 4-04 3/2014	eplacemen Ohio - MF OJECT N	nt Program 2 216.25 to 0. 71-14-	221.0 08
	Test Locatio Surface Elev Testing Pers Surface Mat Test Elevatio	n: vation: sonnel: 'I / Thick.: on:	Sta. 5+17, 5 998.5 ft msl Garret F. Asphalt/Cor 996.58 ft ms	51.8' Lt. hcrete/Slag sl	, 23 in		Ha Ha Dr Ou Te	ammer T ammer V op Heigl utput File erminatio	ype: /eight: ht: Name: n Depth:	Ver 17. 22. N/A 28.	rtek Tra 6 lb 6 in 6 in 98 in	ilor Mour	nted	
		ADCP Su	ummary						Graphic	al Penetra	ation Ra	te Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Dei	notes 1	Top of Su	bgrade 1	CI	BR	100		1,000
2	2.56	65.00	32.50	32.50	3.3		0							
4	5.31	70.00	17.50	17.50	11.8		-							
3	9.25	49.00 51.00	16.33	16.33	12.8	-	-							
3	10.91	42.00	14.00	14.00	15.2		6 -			I				
4	13.07	55.00	13.75	13.75	15.5	_	-			T				
4	15.04	50.00 51.00	12.50	12.50	17.3	-	-			•				
4	19.09	52.00	13.00	13.00	16.5				f	🛉				
5	21.02	49.00	9.80	9.80	22.7		12 -							
5	23.31	58.00	11.60	11.60	18.8		1							
4	25.20	48.00	12.00	12.00	18.1		-			T				
3	27.28	53.00 43.00	10.60	10.60	20.8	-	18		•	•				
-							-		× -	•				
						Î	-	•	(
						n (i	-		Ν					
						tio	24 -		1	.				
						etra	-		1	•				
						ene	-		<					
						οf F]			▲				
						ţ	30 -							
						Dep	-							
							1							
						-	36							
]	-							
							-							
						-	42							_
							-							
]	-							
						4	-							
						-	48							
						1	-							
]	-	Avg. P	R = 14.83 n	nm/blow	-	-Penetr	ation Rate	
							·	CBR =	14			-CBR		
Notes:						-	54 + 0) 1	10 2	20 3	30	40	50	60
									Penet	tration R	ate (m	m/blow)		
						1					•			
						A	uton	nated I	Dynamio ()	Cone	Penetro 6951)	ometer	Summ	ary
------------------	--	--	--	--	----------------------	-----------------------------------	--------------------------------------	---	---	---	--	-----------------------------------	-----------------------------------	--------------------
F	ESOURCE INTERNET	6350 Co Telep Fax N) President lumbus, Ol bhone: (614 lumber: (61	ial Gatew hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC OB N P Nc E TE	T <u>C</u> DN <u>T</u> No. <u>N</u> D. ST PER	Dhio Turnp Tumball/M I-14-020(2	ike Paver lahoning (<u>)</u> O <u>B-4</u> D <u>8/1</u>	ment Rep County, (TC PRO 14-05 9/2014	blacement Dhio - MP JECT No	Program 216.25 to . 71-14-(<u>221.0</u>)8
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'I / Thick.: on:	Sta. 14+46, 1003.9 ft m Garret F. Asphalt/Cor 1002.07 ft n	52.1' Rt. sl ncrete/Slag nsl	, 22 in		Ha Ha Dro Ou Te	mmer T mmer W op Heigł tput File rminatio	ype: /eight: ht: Name: n Depth:	Ver 17. 22. N/A 29.	rtek Trai 6 lb 6 in 6 in 88 in	lor Mount	ed	
		ADCP Su	ummary						Graphic	al Penetra	ation Rate	e Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	CBR	0 Der	notes 1 0 +	Top of Su	bgrade 1	C 0	BR	100	1	I,000	
3 3 3	2.44 4.49 6.85	62.00 52.00 60.00	20.67 17.33 20.00	20.67 17.33 20.00	8.1 12.0 10.2	-	0 - - - -		2	•				
3 3 3	8.82 11.14 12.91	50.00 59.00 45.00 76.00	16.67 19.67 15.00	16.67 19.67 15.00	12.5 10.4 14.1	-	6			[
2 2 2 2	17.76 19.72 22.13	47.00 50.00 61.00	23.50 25.00 30.50	23.50 25.00 30.50	6.3 5.5 3.7	-	12		\rightarrow	(_
2 3 2	24.80 27.80 29.88	68.00 76.00 53.00	34.00 25.33 26.50	34.00 25.33 26.50	3.0 5.4 4.9	-	18							
						(ii) r								
						enetratio	24	•						
						epth of P	30 -		I					
							36 -							
							-							
							42							
						-	48							
						-	54	Avg. Pl CBR =	R = 22.55 n 7	nm/blow		Penetra	tion Rate	
Notes:							0	1	0 2 Penet	tration R	30 ate (mn	40 1/blow)	50	60

						A	utor	nated D)ynamio (A	Cone	Penet 6951)	rometer	r Summ	ary
R	ENOLUTION NEEDEN	6350 Co Telep Fax N	Presidenti lumbus, Ol hone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC JOB I JOB I CP No E TE	T <u>O</u> DN <u>Ti</u> No. <u>N</u> D. ST PER	hio Turnp rumball/M -14-020(2 FORMEI	ike Paver ahoning () 0 ⁻ <u>B-4</u> 0 <u>8/1</u> ;	nent Re County, IC PRC 4-06 3/2014	placement Ohio - MP OJECT No	t Program 216.25 to 0. 71-14-1	221.0 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	on: vation: sonnel: 'I / Thick.: on:	Sta. 23+75, 1013.2 ft ms Garret F. Asphalt/Cor 1011.28 ft n	51.0' Lt. sl ncrete/Slag nsl	, 23 in		Ha Ha Dr Ou Te	ammer Ty ammer W op Heigh utput File rminatior	/pe: /eight: t: Name: n Depth:	Ver 17. 22. N/A 29.	tek Tra 5 lb 5 in 59 in	ilor Moun	ted	
		ADCP Su	immary						Graphica	al Penetra	tion Ra	te Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes 1	Top of Sut	ograde 1	0 CI	BR	100		1,000
2	2.44	62.00	31.00	31.00	3.6		0			· · · · ·				
2	6.10	93.00	46.50	46.50	1.6		-		–					
2	8.43 9.76	59.00 34.00	29.50	29.50	4.0									
3	12.17	61.00	20.33	20.33	10.0		6 -	$\boldsymbol{\prec}$						
2	13.94	45.00	22.50	22.50	6.8		1							
2	16.38	62.00	31.00	31.00	3.6									
2	20.35	54.00 47.00	27.00	27.00	4.7 6.3		-			Γ				
2	22.24	48.00	24.00	24.00	6.0		12							
2	23.54	33.00	16.50	16.50	12.6		-		×					
5	25.55	51.00	10.20	10.20	21.7		1							
3	27.56	51.00	17.00	17.00	12.2		10		٦					
5	23.03	04.00	10.00	10.00	11.5					1				
						<u>ج</u>	-		•	1				
						u) u	1							
						tio	24 -							
						etra	1	•	<					
						ene	-							
						Ъ Б	-			Ι				
						Ę	30		•					
						dəc	-							
						-	26							
						-	30 -							
						1]							
						1	-							
							42 -							
						-	5							
						1	1							
]								
						-	48 -							-
						1	-				_			
	ļ					1]	Avg. PR	R = 23.86 n	nm/blow	-	-Penetra	tion Rate	
]		CBR = 6	5			-CBR		
Notos						-	54 0	1	0 2	0 3	; ;0	40	50	60
INOTES:								•	Penet	ration R	ate (mr	n/blow)		
						1					~~~ (111			

						Aut	oma	ited D)ynamio (/	c Cone ASTM D	Penetro 6951)	ometer	Summ	ary
R	NOIL	6350 Co Telep Fax N	Presidenti lumbus, Ol ohone: (614 umber: (61	ial Gatewa nio 43231 4) 823-49 4) 823-49	ay 49 990	PROJ LOCA RII JC ADCF DATE	ECT TION DB No P No.	1 <u>T</u>). <u>N</u> T PER	Phio Turnp rumball/M -14-020(2 FORME	ike Paven lahoning (2) OT <u>B-4</u> D <u>8/1</u> 1	nent Repl County, Ol TC PROJ 4-07 9/2014	acement I nio - MP 2 ECT No.	² rogram 16.25 to 2 71-14-0	221.0
	Test Location Surface Ele Testing Per Surface Mar Test Elevati	on: vation: sonnel: t'l / Thick.: ion:	Sta. 33+04, 1017.9 ft m Garret F. Asphalt/Cor 1016.23 ft r	52.7' Rt. sl ncrete/Slag nsl	, 20 in		Harr Harr Drop Outp Tern	mer T mer W Heigh out File ninatio	ype: /eight: ht: Name: n Depth:	Ver 17. 22. N/A 28.	tek Trailo 6 lb 6 in 58 in	or Mount	ed	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Denc	otes To 1	op of Su	bgrade 1	CI	BR 1	00	1	,000
10	2.05	52.00	5.20	5.20	46.1		• -				_			
6	3.86	46.00	7.67	7.67	29.8	_	-							
6	5.94	53.00 69.00	8.83 23.00	8.83 23.00	25.5		1	1		/				
3	10.63	50.00	16.67	16.67	12.5		6	-						_
3	13.11	63.00	21.00	21.00	7.8		1			$\boldsymbol{<}$				
4	15.47	60.00	15.00	15.00	14.1	_	1			~				
4	20.00	50.00 65.00	12.50	12.50	17.3				<					
3	22.24	57.00	19.00	19.00	10.8	- 1:	2		2					
3	24.65	61.00	20.33	20.33	10.0		-		2	$\boldsymbol{\zeta}$				
4	26.93	58.00	14.50	14.50	14.6		-		1					
5	28.58	42.00	8.40	8.40	26.9	1			- ▲	}				
						- ''								
						2				7				
						-ij	-			/				
						2 <u>ti</u>	4 —			<u> </u>				_
						tra								
						ene	-							
						f Pe	1	*						
						° 4	0							_
						ept	-							
						Δ								
						_								
						3	6							
						_	-							
						-	-							
							<u>,</u>							
							-							
				├		_	1							
							1							
						4	8 -							_
				↓]		_	1							
						-	-	Avg. Pl	R = 14.49 ı	nm/blow	-	-Penetrat	ion Rate	1
						-	1	CBR =	15			CBR		
						5	4 🕂		• • • •			10	50	
Notes:							U	1	U 2	u 3	oto (+U /blc····	50	00
									Pene	tration R	ate (mm	(wola)		

						Α	uton	nated [Dynami ()	C Cone	Pene	etromete	er Summ	ary
R	ESOURCE IN TER	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	ial Gatew hio 43231 4) 823-49 (4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB N P No E TE	T <u>C</u> DN <u>T</u> No. <u>N</u> D. ST PER	Dhio Turnp Trumball/M I-14-020(2	bike Pave Mahoning 2) O <u>B-4</u> D <u>8/1</u>	ment R County TC PR 14-08 4/2014	eplaceme , Ohio - Mi OJECT N	nt Program P 216.25 to Io. <u>71-14-(</u>	221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'l / Thick.: on:	Sta. 42+33, 1009.5 ft m: Garret F. Asphalt/Cor 1007.58 ft n	51.6' Lt. sl ncrete/Slag nsl	, 23 in		Ha Ha Dro Ou Te	ummer T ummer W op Heigh utput File rminatio	ype: /eight: ht: Name: n Depth:	Ve 17 22 N// 25	rtek Tra 6 lb 6 in 4 51 in	ailor Mou	nted	
		ADCP Su	ummary						Graphic	al Penetra	ation Ra	ate Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Dei	notes	Top of Su	bgrade	C	BR	100		1,000
2 3 2	1.50 3.90 5.83	38.00 61.00	19.00 20.33 24.50	19.00 20.33 24.50	10.8 10.0	-	0 -			Ĭ				
2	7.40	40.00	20.00	20.00	10.2									
3	9.57 11.50	55.00 49.00	18.33 12.25	18.33 12.25	11.2 17.6	_								
4	13.50	51.00	12.75	12.75	16.9		-							
6	15.55	52.00	8.67	8.67	26.0		-			\sim				
5	20.04	68.00	13.60	13.60	29.8 15.7	-	12		T	I				
2	21.34	33.00	16.50	16.50	12.6		-							
4	23.35	51.00	12.75	12.75	16.9	-	-	f			Į –			
1	25.51	55.00	7.86	7.86	29.0	-	18							
						Ē	-							
						n (i								
						atio	24 -		/					
						etra	-	-		1				
						Pen								
						of I	20							
						pth	30 -							
						De	1							
]							
							36 -							
							1							
							1							
]							
							42							
							-							
						-	1							
						1	48							
]	-							
						-	1	Ava. Pl	R = 14.94 r	nm/blow		Penet	ration Rate	ור
							1	CBR =	14			CBR		
							54			+		42		
Notes:							0	1	U 2	10 1201	3U Data (40	50	60
									Pene	tration R	tate (m	(WOID/ITH		

						Autor	nated D)ynamio (<i>F</i>	c Cone ASTM D	Penetro 6951)	ometer	Summ	ary
R	ENOLVIN	6350 Co Telep Fax N) President lumbus, Ol bhone: (614 lumber: (61	al Gatewa nio 43231 4) 823-49 4) 823-49	ay 49 990	PROJEC LOCATIC RII JOB I ADCP No DATE TE	T <u>O</u> DN <u>T</u> I No. <u>N</u> o. EST PER	hio Turnp rumball/M -14-020(2 FORMEI	ike Paver ahoning (2) O ⁻ <u>B-4</u> D <u>8/1</u> 2	nent Rep County, O TC PRO 4-09 9/2014	lacement hio - MP 2 JECT No.	Program 216.25 to 71-14-(221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 51+62, 991.5 ft msl Garret F. Asphalt/Cor 990.08 ft ms	52.8' Rt. hcrete/Base	ə, 17 in	Ha Ha Dr Ou Te	ammer Ty ammer W op Heigh utput File erminatior	rpe: eight: t: Name: n Depth:	Ver 17.0 22.1 N/A 32.1	tek Trailo 6 Ib 6 in 83 in	or Mounte	ed	
		ADCP Su	ummary					Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Denotes 1 0 +	Top of Sub	ograde 1	0 0	BR	100	1	1,000
13	1.93	49.00	3.77	3.77	66.1		•						
/ 11	3.86 5.83	49.00 50.00	7.00 4.55	7.00 4.55	33.0 53.6								
9	7.83	51.00	5.67	5.67	41.8					\sim			
6	10.00	55.00	9.17	9.17	24.4	- 6-				7			
8	12.13	54.00 49.00	6.12	6.12	34.4								
4	16.57	64.00	16.00	16.00	13.1	-							
3	18.54	50.00	16.67	16.67	12.5	12				\			_
3	20.94	61.00 49.00	20.33	20.33	<u>10.0</u> 5.8	- 1				7			
2	24.69	46.00	23.00	23.00	6.5								
2	27.17	63.00	31.50	31.50	3.5								
2	28.94	45.00	22.50	22.50	6.8	18 -			•				
2	32.83	36.00	18.00	18.00	11.5								
						(i							
						u 24			7				_
						itrat							
						ene		<		>			
						- Je -			-				
						년 ³⁰			1				_
)ep		<u> </u>	2				
								•	-				
						36							
						1 1							
]							
						42							-
						1 1							
						48 -							
]]	A	44-0			Denetret	ion Boto	ן ן
							Avg. PR CBR = 1	a = 14.78 n 4	wold/mr		-renetrat	ion Kate	
						54							늬
Notes:		1	1	I		0) 10	0 2	:0 3	80	40	50	60
								Penet	ration R	ate (mm	/blow)		

						A	uton	nated	Dynamie (/	Cone	Penetro 6951)	ometer	Summ	ary
R	NOTIN	6350 Co Telep Fax N	President lumbus, Ol bhone: (61 umber: (61	ial Gatew hio 43231 4) 823-49 4) 823-49	ay 49 990	PRO LOC RII J ADC DAT	DJEC ATIC OB N P No E TE	T (DN - No. I D. ST PEF	Dhio Turnp Trumball/M N-14-020(2 RFORMEI	ike Paver lahoning (2) O <u>B-4</u> D <u>8/1</u>	ment Repl County, O TC PRO 14-10 4/2014	acement hio - MP JECT No	Program 216.25 to . 71-14-(221.0
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	n: vation: sonnel: 'I / Thick.: on:	Sta. 60+89, 981.3 ft msl Garret F. Asphalt/Sla 979.3 ft msl	60.5' Lt. g, 24 in			Ha Ha Dro Ou Te	ummer T ummer V op Heig utput File rminatic	ype: Veight: ht: Name: n Depth:	Ver 17. 22. N/A 31.	rtek Trailo 6 lb 6 in 4 89 in	or Mount	ed	
		ADCP Su	ummary						Graphic	al Penetra	ation Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes 1 0 +	Top of Su	ıbgrade 1	0	BR1	100	1	,000
7	2.56	65.00	9.29	9.29	24.1		Ĩ							
5	4.13 5.91	40.00 45.00	8.00 15.00	8.00 15.00	28.4	-	-	1		L .				
2	8.03	54.00	27.00	27.00	4.7		-	•						
3	9.69	42.00	14.00	14.00	15.2	-	6 -			<				
2	13.66	48.00	24.00	24.00	6.0		1							
2	15.39	44.00	22.00	22.00	7.1		-			7				
2	17.76	60.00	30.00	30.00	3.8	_	12			<u> </u>				
3	20.24	63.00 36.00	21.00 9.00	21.00 9.00	7.8 24.9		1							
3	23.82	55.00	18.33	18.33	11.2		-			1				
4	26.14	59.00	14.75	14.75	14.3		-							
3	27.76	41.00	13.67	13.67	15.6	_	18							
3	31.89	58.00	19.33	19.33	10.6	_	-							
-						(in	-	•	<					
						ion	24							
						trat	-			Δ				
						ene	-		I	1				
						of P	-		1					
						th o	30							
						Dep	-							
							1							
						-	36							
						1	1							
						_	1							
						-	42 -							_
							1							
							1							
						-	<u> </u>							
							40 -							
						1	1	Aur -	D _ 47 47	m/bla…		Penotro	tion Pate	ן
						-	-	AVG. P CBR =	n = 17.17 n 12	WOIGVIII		- CBR	uon Kale	
							54				↓ 			1
Notes:			1	1		1	0		10 2	0 3	30	40	50	60
									Penet	ration R	ate (mm	/blow)		

						Αι	utor	nated	D	ynamio (/	Cone	Pen 0695	etro 1)	meter	Summ	ary
R	ESOURCE IN TERM	6350 Co Teler Fax N) President lumbus, Ol phone: (614 lumber: (61	al Gatew hio 43231 4) 823-49 4) 823-49	ay 49 990	PRO LOC RII J ADC DAT	DJEC ATIC OB I P No E TE	T DN No. D. EST PE	Oh Tru N-	nio Turnp umball/M 14-020(2 CORMEI	ike Pave ahoning ?) C B-/2 D <u>8/</u> 2	ement Count DTC P 44-11 26/20	Replae ty, Ohi ROJE 14	cement io - MP ECT Nc	Program 216.25 to). 71-14-(221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 70+10, 982.6 ft msl Steve B. Asphalt, 16 981.27 ft ms	17.4' Rt. in sl			Ha Ha Dr Ou Te	ammer ammer op Heig utput Fi erminati	Typ We ght le f	be: eight: : Name: Depth:	Ve 17 22 N/ 3.3	ertek 1 .6 lb .6 in A 35 in	Frailor	Mount	ed	
		ADCP St	ummary							Graphic	al Penetr	ation	Rate F	Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow	DCPI (mm/blow)	CBR	0 Der	notes 1	Top of S	Subę	grade 1	0 0	BR	10	0		1,000
3 9 50	(in) 1.18 3.15 3.35	(mm) 30.00 50.00 5.00	(mm/blow) 10.00 5.56 0.10	10.00 5.56 0.10	22.2 42.8 3849.3	-	0 +									
							6 -									
						-	12 -									
						•	•									
						Ē	18 -									
						tration (ii	24 -									
						of Penet	30									
						Depth	-									
						-	36 -									
						-	42 -									
						-	-									
						-	48 -	Ava I	PR	= 5.22 m	n/blow			Penetra	tion Rate	1
							- 54 -	CBR :	= 46	6 		_		CBR		
Notes: Ref	fusal	I	I	I	I		0		10	2 Penet	o tration F	30 Rate (40 mm/b) Dow)	50	60

						Α	uto	mated I	Dynami (/	c Cone ASTM D	Penetr 6951)	ometer	Summ	ary
R	E SOURCE INTERN	6350 Co Telep Fax N	Presidenti lumbus, Ol bhone: (614 umber: (61	al Gatew hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATI JOB CP N TE TI	CT <u>(</u> ON <u>1</u> No. <u>N</u> lo. EST PEF	Dhio Turnp Trumball/M N-14-020(2 RFORMEI	bike Paver lahoning (2) O <u>B-4</u> D <u>8/1</u>	nent Rep County, C TC PRO 4-12 4/2014	lacement Dhio - MP JECT No	t Program 216.25 to 0. 71-14-(221.0
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 79+48, 994.8 ft msl Garret F. Asphalt/Sla 992.97 ft ms	63.0' Lt. g, 22 in sl			Hi Hi D O Te	ammer T ammer V rop Heigl utput File erminatio	ype: Veight: ht: Name: n Depth:	Ver 17. 22. N/A 20.	tek Trail 6 lb 6 in 39 in	or Moun	ted	
		ADCP Su	ummary						Graphic	al Penetra	ation Rate	e Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes	Top of Su	ibgrade 1	CI	BR	100		1,000
2 4 2	1.89 3.98 5.55	48.00 53.00 40.00	24.00 13.25 20.00	24.00 13.25 20.00	6.0 16.2 10.2		0 -							
2	7.76	56.00	28.00	28.00	4.4		6 -							
2	9.69 11.85	49.00 55.00	24.50 7.86	24.50 7.86	5.8 29.0		•	-						
5	13.62	45.00	9.00	9.00	24.9				$ \mathbf{V} $					
12	15.59	50.00	4.17	4.17	59.0		-	-		<				
44	19.57	51.00	1.16	1.16	247.5		12 -	۲		7				_
40	20.39	21.00	0.53	0.53	600.9		18 -							
						ition (in)	24 -							
						Penetra	-	•						
						h of	30 -							
						Deptl								
							36 -							
							•							
							42 -							
							-							
							48 -							
								Avg. P	R = 12.16 r	nm/blow	-	Penetra	ation Rate	ו ך
								CBR =	18			-CBR		
Notes:							54 - (, , , , , D 1	10 2	20 3	, , , , , 30	40	50	60
10163.									Pene	tration R	ate (mm	/blow)		

						A	uto	mated [Dynamio (A	Cone	Penetro 6951)	ometer	Summa	ary
R	NOTIVIT	6350 Co Telep Fax N) Presidenti Iumbus, Ol ohone: (614 Iumber: (61	al Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIO OB P N E TI	CT <u>C</u> ON <u>T</u> No. <u>N</u> o. EST PER	Dhio Turnp irumball/M I-14-020(2 FORME	ike Paver (ahoning (2) O (B-4) (D) <u>8/2</u>	nent Repla County, Ol TC PROJ 4-13 8/2014	acement F nio - MP 2 ECT No.	Program 16.25 to 71-14-(221.0
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	on: vation: sonnel: 'I / Thick.: on:	Sta. 89+17, 1008.9 ft ms Asphalt/Bas 1007.32 ft n	26.7' Rt. sl se, 19 in nsl			Ha Ha Di Te	ammer Ty ammer W rop Heigh utput File ermination	ype: /eight: it: Name: n Depth:	Ver 17. 22. N/A 24.	tek Trailc 6 lb 6 in 02 in	or Mounte	d	
		ADCP St	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes 1 0 -	Top of Su	bgrade 1	0 0	BR 1	00	1	I,000
1 5 5	1.97 3.74 6.02	50.00 45.00 58.00	50.00 9.00 11.60	50.00 9.00 11.60	1.4 24.9 18.8	-		-					•	
4	8.27	57.00	14.25	14.25	14.9					<i> </i>				
3	10.24	50.00	16.67	16.67	12.5		6 -		1	7				
2	12.32	49.00	20.50	20.50	5.8		-			/				
2	16.30	52.00	26.00	26.00	5.1		-							
3	18.07	45.00	15.00	15.00	14.1		12 -							_
18 29	20.16	53.00	2.94	2.94	87.1		-							
35	24.02	46.00	1.31	1.31	215.0	-	-		L	7				
							18 -							
						on (in)	-	ł						
						enetrati	24 -	•						
						h of P∈	30 -							
						Dept	-							
							36 -							_
							-							
							42 - -							_
						-	-							
						1	48 -							
						-	-							
						1	-	Avg. PF	R = 16.63 n	nm/blow	-	-Penetrati	on Rate	
						-	54 -	CBR =	13			-CBR]
Notes:		<u> </u>	I				() 1	0 2 Bonst	0 :	30 4	40 (50	60
									renet	ration R	ate (mm/	uow)		

						Αι	uton	nated E	Dynamio (A	Cone	Penetro 6951)	ometer S	Summa	ary
R	NOTION A	6350 Co Telep Fax N	Presidenti lumbus, Ol bhone: (614 umber: (61	al Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRO LOC. RII J ^I ADC DATI	JEC ⁻ ATIC OB N P No E TE	T <u>C</u> N <u>T</u> Io. <u>N</u> ST PER	Dhio Turnp rumball/M I-14-020(2 FORME	ike Paver ahoning () O ⁻ <u>B-4</u> O <u>8/1</u>	nent Repl County, O IC PRO 4-14 5/2014	lacement P hio - MP 21 JECT No.	rogram 16.25 to 71-14-(<u>221.0</u>)8
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'I / Thick.: on:	Sta. 98+06, 1013.9 ft ms Garret F. Asphalt/Cor 1011.98 ft n	50.2' Lt. sl ncrete/Slag nsl	, 23 in		Ha Ha Dro Ou Tei	mmer Ty mmer W op Heigh tput File minatior	ype: /eight: nt: Name: n Depth:	Ver 17. 22. N/A 26.	tek Trailo 6 lb 6 in 65 in	or Mounted	d	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow	DCPI (mm/blow)	CBR	0 Den	notes ⁻ 1	Fop of Sul	bgrade 1	0 CI	BR	100	1	,000
1	2.13	54.00	1.2	_	0 †			· · · ·		<u>, , , , , , , , , , , , , , , , , , , </u>				
2	5.59	88.00	44.00	DCPI (mm/blow) DCPI (mm/blow) 54.00 54.00 44.00 44.00 43.00 43.00 26.33 26.33			1							
1	7.28	43.00	43.00	43.00	1.9		1							
3	13.15	79.00	20.33	23.33	6.3		6 -					- 1		_
2	14.57	36.00	18.00	18.00	11.5		-							
4	16.46	48.00	12.00	12.00	18.1	_								
8	18.46	51.00 48.00	6.38	6.38	36.7	-	-			r				
10	20.33	55.00	5.50	5.50	43.3	-	12							_
5	24.84	59.00	11.80	11.80	18.4		-							
4	26.65	46.00	11.50	11.50	18.9		-			\sim				
							10							
						-	10							
						2	1	< ─				>		
						i) c	-							
						tio	24 -							_
						etra	-		T	T				
						ene	-		•					
						β	1							
						ţ	30						<u> </u>	_
						Dep	-							
							1							
						-	36							
						-	30 -							
						1	1							
							-							
						-	42 🖡							_
						1	1							
						1	-							
							1							
						-	48							_
						1]							
						1	1	Avg. PF	R = 21.52 n	nm/blow		-Penetratio	on Rate	
								CBR = 7	7			CBR		
Notos						4	э4 + 0	1	0 2	0 3	30	40 5	0	60
110185.									Penet	ration R	ate (mm	/blow)		
						1								

						Α	utor	nated [Dynamio (/	c Cone ASTM D	Penetr 6951)	omete	r Summ	ary
R	ENOLUTION NEEDEN	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB I IOB I IOB I IOB I IOB I	CT <u>C</u> DN <u>T</u> No. <u>N</u> o. EST PER	Dhio Turnp Trumball/M I-14-020(2 FORMEI	ike Paver lahoning (2) O ⁻ <u>B-4</u> D <u>8/2</u>	nent Rep County, C TC PRO 4-15 7/2014	olacemen Dhio - MP JECT No	t Program 216.25 to 5. <u>71-14-</u>	221.0 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'I / Thick.: on:	Sta. 107+38 1009.8 ft m Steve B. Asphalt/Cor 1007.8 ft m	3, 29.3' Rt. sl ncrete/Slag sl	, 24 in		Ha Ha Dr Ou Te	ammer T ammer W op Heigh utput File erminatio	ype: /eight: nt: Name: n Depth:	Ver 17. 22. N/A 28.	tek Trail 6 lb 6 in 35 in	or Moun	ted	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	e Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes 1	Top of Su	bgrade 1	0 CI	BR	100		1,000
2	2.76	70.00	(IIIII/blow) 35.00	35.00	2.8		0							·
2	5.91	80.00	40.00	40.00	2.2		-	,						
2	7.87 9.84	50.00	25.00 16.67	25.00 16.67	5.5	-	-							
4	11.81	50.00	12.50	12.50	17.3	1	6 -					>		
4	13.78	50.00	12.50	12.50	17.3]	-							
4	16.14	60.00	15.00	15.00	14.1	-	1							
4 4	18.19	52.00 48.00	13.00	13.00	16.5	-	-							
3	22.05	50.00	16.67	16.67	12.5	1	12 -		1					
4	24.09	52.00	13.00	13.00	16.5		-		•	•				
3	26.10	51.00	17.00	17.00	12.2	_	-							
4	28.35	57.00	14.25	14.25	14.9	-	10			I				
						-	10		1	1				
							-							
						<u> </u>	-							
						tior	24 -							
						itra	1							
						ene	-		- T	ヽ				
						Ę	-		4					
						h o	30 -							-
						ept	-							
]							
]	-							
						4	36							
						-	-							
						1	-							
]	42							
						4	4 2							
						-	-							
						1	-							
						1	48 -							
]	-							
						-]	Ava. Pl	R = 18.66 n	nm/blow		Penetra	ation Rate	ן וך
						-	-	CBR =	11			-CBR		
						1	54 -				↓			붜
Notes:						1	0	· 1	υ 2 Γ		50	40	50	60
									Pene	tration R	ate (mm	n/blow)		

						A	uton	nated I	Dynamie (/	c Cone ASTM D	Pene 06951	etromet	er Summ	ary
R	ESOURCE INTER	6350 Co Telep Fax N	President lumbus, Ol ohone: (61 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB N P No E TE	T <u>(</u> PN <u>1</u> No. <u>N</u> ST PER	Dhio Turnp Trumball/M N-14-020(2 RFORMEI	bike Paver lahoning (2) O <u>B-4</u> D <u>8/1</u>	ment R County TC PF 14-16 5/201	Aeplaceme V, Ohio - M ROJECT N 4	nt Program P 216.25 to No. <u>71-14-</u>	<u>221.0</u> 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'l / Thick.: on:	Sta. 121+84 1002.4 ft m: Garret F. Asphalt/Cor 1000.57 ft n	4, 59.4' Lt. sl ncrete/Slag nsl	, 22 in		Ha Ha Dro Ou Tei	mmer T mmer V op Heigl tput File rminatio	ype: /eight: ht: Name: n Depth:	Ve 17. 22. N// 15.	rtek Tı <u>6 lb</u> 6 in 4 98 in	railor Mou		
		ADCP Su	ummary						Graphic	al Penetra	ation R	ate Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow	DCPI (mm/blow)	CBR	0 Der	notes ⁻	Top of Su	bgrade 1	C	BR	100		1,000
4	(in) 3.74	(mm) 95.00 72.00	(mm/blow) 23.75	23.75	6.1		0				<u></u>		<u> </u>	
2	8.03	37.00	18.50	18.50	11.1		-							
6	10.04	51.00	8.50	8.50	26.6		6							
3	15.98	70.00	23.33	23.33	6.3	-				2				
						Penetration (in)	12	• 		~				
						h of	30 -							
						Deptl	-							
						-	36							
						1	1							
						-	1							
						-	42 -				_			-
						1	-							
						-	-							
							48				-			
						-	1							
						1	-	Avg. P	R = 17.45 n	nm/blow	[Pene	tration Rate	1
							_]	CBR =	12			CBR		
Notes:							54 + 0	1	0 2	20 :	30	40	50	60
110105.									Penet	tration R	ate (n	nm/blow)		

						Aut	omated	Dynamie (/	c Cone F ASTM De	Penetro 6951)	meter Su	umma	iry
R	NOTION PROVIDENCE	6350 Co Telep Fax N	Presidenti lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PROJE LOCA ⁻ RII JO ADCP DATE	ECT TION B No. No. TEST PE	Ohio Turnp Trumball/M N-14-020(2 RFORMEI	hike Pavem lahoning C 2) OT <u>B-44</u> D <u>8/27</u>	ent Repla ounty, Oh C PROJE 1-17 7/2014	cement Pro io - MP 216 ECT No. <u>7</u>	ogram .25 to 2 71-14-08	221.0 8
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	on: vation: sonnel: 'I / Thick.: on:	Sta. 125+87 1000.6 ft ms Steve B. Asphalt/Cor 998.68 ft ms	7, 29.7' Rt. sl ncrete/Slag sl	, 23 in		Hammer ⁻ Hammer \ Drop Heig Output Fil Terminatio	Type: Weight: Jht: e Name: on Depth:	Vert 17.6 22.6 N/A 28.7	ek Trailor i lb i in 74 in	Mounted		
		ADCP Su	Immary					Graphic	al Penetrat	tion Rate F	Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Denot	es Top of S 1	ubgrade 1	0 CB	IR 10	0	1,	,000
1	2.17	55.00	55.00	55.00	1.1)						-
2	3.94	45.00	22.50	22.50	6.8								
2	7.09	80.00	40.00	40.00	2.2		-		\sim				
2	11.02	50.00	25.00	25.00	5.5	6	;						_
3	13.39	60.00	20.00	20.00	10.2								
3	14.96	40.00	13.33	13.33	16.0	_							
3	16.93	50.00	16.67 12.50	16.67	12.5	-	-		-				
4	20.87	50.00	12.50	12.50	17.3	- 12	2						-
3	22.83	50.00	16.67	16.67	12.5								
4	24.80	50.00	12.50	12.50	17.3		1		7				
4	26.77	50.00	12.50	12.50	17.3								
5	20.74	50.00	10.00	10.00	22.2	10			\				
						-	-						
						.i.	-						
						Lio 24	, - , -						_
						trat	-	ſ					
						ene	-	*					
						f P	-	4					
						0 ع 2 ع)						_
						ept	1						
						Ď	1						
						1	1						
						36	i <u> </u>						
						_	-						
						-	1						
						1	. 1						
						42	•						
						_							
						-	4						
						48	, 1						
							1						
						_	Ava. F	PR = 22.8 m	m/blow		Penetration	Rate	
						-	CBR =	:7			CBR		
						54	، 	+					
Notes:]	U	10 2 F	:u 30	u 40	u 50		60
								Penet	tration Ra	ate (mm/b	biow)		

						A	utor	nated D)ynamio (/	CONE	Penetro 6951)	ometer	Summ	ary
R	ESOURCE INTERNET	6350 Co Teler Fax N) Presidenti lumbus, Ol bhone: (614 lumber: (61	al Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC OB I P No E TE	T <u>C</u> DN <u>T</u> No. <u>N</u> o. EST PER	phio Turnp rumball/M -14-020(2 FORMEI	ike Paven lahoning C 2) O1 <u>B-4</u> 0 <u>8/14</u>	nent Repla County, Ol C PROJ 4-18 4/2014	acement I nio - MP 2 ECT No.	Program 216.25 to 71-14-0	221.0
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 135+22 995.6 ft msl Garret F. Asphalt/Cor 993.68 ft ms	2, 50.8' Lt. hcrete/Slag	, 23 in		Ha Ha Dr Ou Te	ammer Ty ammer W op Heigh utput File ermination	/pe: /eight: .t: Name: n Depth:	Veri 17.6 22.6 N/A 29.3	tek Trailc 3 lb 3 in 33 in	or Mounte	ed	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes 1	Top of Sul	ograde 1	0 0	3R 1	00	1	1,000
2 4	4.13 8.46	105.00 110.00	52.50 27.50	52.50 27.50	1.3 4.6	-								
3	11.54 13.15	78.00 41.00	26.00 20.50	26.00 20.50	5.1 8.2		-	N					-	
3	15.00	47.00	15.67	15.67	13.4		6 -							-
5	17.44	62.00	12.40	12.40	17.4	-	-			-				
5	19.49 21.46	52.00	10.40	10.40	21.2	-	-		T					
5	23.43	50.00	10.00	10.00	22.2		12							
5	25.43	51.00	10.20	10.20	21.7		12							
6 6	27.36 29.33	49.00 50.00	8.17 8.33	8.17 8.33	27.8 27.2	-	- - -							
							18 -	•	ł	ł				
						ation (ir	24 -			ļ				
						Penetra	-	ł		\ \				
						ן of	30 -	•						
						Deptl	-							
							36 -							
						4								
							42 -							_
							-							
						1	48							
]								
							•	Avg. PF CBR = 1	R = 17.64 n 12	nm/blow	-	-Penetrat -CBR	ion Rate	
						1	54		0 2	 0 2	· · · · · ·	10	50	
Notes:							U	, I	Penet	tration Ra	ate (mm/	blow)		00

						Α	utor	nated I	Dynamio (<i>I</i>	Cone	Penetr 6951)	ometer \$	Summa	ary
R	ESOURCE INTERNET	6350 Co Teler Fax N	Presidenti lumbus, Ol phone: (614 umber: (61	al Gatewa nio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB I IOB I IOB I IOB I IOB I IOB I IOB I I	T <u>C</u> DN <u>1</u> No. <u>N</u> D. EST PER	Dhio Turnp Trumball/M N-14-020(2 RFORME	ike Paver ahoning () O^{-} B-4 D 8/2	nent Rep County, O TC PRO 4-19 7/2014	lacement P hio - MP 2 JECT No.	16.25 to 71-14-0	221.0)8
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	n: vation: sonnel: 'I / Thick.: on:	Sta. 144+39 990.4 ft msl Steve B. Asphalt/Cor 988.4 ft msl	9, 29.4' Rt.	, 24 in		Ha Ha Dr Ou Te	ammer T ammer V op Heigl utput File erminatio	ype: /eight: ht: Name: n Depth:	Ver 17.0 22.1 N/A 26.4	tek Trail 6 Ib 6 in 46 in	or Mounte	d	
		ADCP Su	Immary						Graphic	al Penetra	tion Rate	e Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Dei	notes 0	Top of Su	bgrade 1		BR 10	100	1	,000
1 2 3 2	2.87 5.31 7.87 10.04	73.00 62.00 65.00 55.00	73.00 31.00 21.67 27.50	73.00 31.00 21.67 27.50	0.7 3.6 7.4 4.6		U -		>					
8 13 5 6	12.13 14.17 15.94 18.03	53.00 52.00 45.00 53.00	6.63 4.00 9.00 8.83	6.63 4.00 9.00 8.83	35.1 61.8 24.9 25.5		6 - - -			\sum				
5 4 3	20.08 22.05 23.98	52.00 50.00 49.00	10.40 12.50 16.33	10.40 12.50 16.33	21.2 17.3 12.8		12	$\overline{(}$						
4	26.46	63.00	15.75	15.75	13.3		18 -				J			
						ation (in)	24				7			
						of Penetr	30 -	1			b			
						Depth								
							36							_
							42 -							_
							48 -							
						•	54	Avg. P CBR =	R = 19.72 n 10	nm/blow		−Penetratio	on Rate	
Notes:							0	2	20 4 Penet	o e ration R	io ate (mm	80 1 /blow)	00	120

						A	utor	nated D)ynamio (/	CONE	Pene	tromete	r Summ	ary
R	NOTIN	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB I IOB I IOB I IOB I IOB I IOB I	T <u>C</u> DN <u>T</u> No. <u>N</u> D. EST PER	hio Turnp rumball/M I-14-020(2	ike Paver lahoning (2) O <u>B-4</u> D <u>8/1</u>	nent Re County, TC PR 4-20 5/2014	, Ohio - MP OJECT No	t Program 216.25 to D. 71-14-	221.0 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	n: vation: sonnel: 'I / Thick.: on:	Sta. 153+79 983.7 ft msl Garret F. Asphalt/Cor 981.53 ft ms	9, 51.0' Lt. ncrete/Slag sl	, 26 in	 	Ha Ha Dr Ou Te	ammer Ty ammer W op Heigh utput File ermination	/pe: /eight: .t: Name: n Depth:	Ver 17. 22. N/A 29.	tek Tra 6 lb 6 in 13 in	ailor Moun	ted	
		ADCP Su	ummary						Graphic	al Penetra	ation Ra	ate Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Dei	notes 0	Top of Sul	ograde 1	C	BR 10	100		1,000
1 1 2	4.13 6.42 9.13	105.00 58.00	105.00 58.00 34.50	105.00 58.00 34.50	0.3	-	0 -							
2	11.14	51.00	25.50	25.50	5.3								-	
4	13.50	60.00	15.00	15.00	14.1		6 -							
2	15.75	40.00	28.50	28.50	4.3		-							
3	18.94	41.00	13.67	13.67	15.6		-							
4	21.46	64.00	16.00	16.00	13.1		12 -		/		1			
3	23.39	49.00	16.33	16.33	12.8	-		<						
4	25.12	44.00 52.00	14.07	13.00	14.4		-				1			
4	29.13	50.00	12.50	12.50	17.3		1							
							18 -							
						-	-	I			T			
						(in)	1	- +			•			
						u	~							
						rati	24							
						net	1				I			
						Pe	-	T			T			
						of	30	•						
						pth	-							
						ð	-							
							1							
]	36 -							_
							-							
						-	-							
						-	-							
]	42							
]	-							
						-	-							
						1	48							
]	- ·							
						-	-		2 - 28 67 5	am/blow		Penetr	ation Rate	ר
						-	-	CBR = 4	4 – 20.07 N	WINDIOW				
							54							늰
Notes:			1	1		1	0	2	0 4	0 0	60	80	100	120
									Penet	tration R	ate (m	m/blow)		

						Aut	omated	Dynam	ic Cone (ASTM [Penetr 06951)	ometer	Summ	ary
R	ESOURCE INTERNET	6350 Co Teler Fax N) President lumbus, Ol phone: (61 lumber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PROJI LOCA RII JO ADCP DATE	ECT FION B No. No. TEST PE	Ohio Turr Trumball/ N-14-020	npike Pave Mahoning (2) O (2) O B-4 ED 9/4	ment Rep County, C TC PRO 14-21 /2014	lacement F Dhio - MP 2 JECT No.	Program 16.25 to 71-14-	221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	on: vation: sonnel: 'I / Thick.: on:	Sta. 163+35 972.6 ft msl Ryan B. Asphalt/Cor 970.43 ft ms	5, 50.8' Rt. hcrete/Slag sl	, 26 in		Hammer Hammer Drop Hei Output F Terminat	Type: Weight: ght: ile Name: ion Depth	Ve 17 22 N// 27	rtek Trail 6 lb 6 in 4 99 in	or Mounte	d	
		ADCP St	ummary					Graphi	cal Penetra	ation Rate	e Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Denot	es Top of S	Subgrade 1	С	BR 10	100		1,000
3 3 1 2 3 5 6 5 3 <t< td=""><td>(in) 2.17 6.73 9.53 11.26 13.50 15.59 17.68 19.57 22.01 24.25 26.26 27.99</td><td>(mm) 55.00 116.00 71.00 44.00 57.00 53.00 48.00 62.00 57.00 51.00 44.00 </td><td>(mm/blow) 18.33 38.67 71.00 22.00 19.00 17.67 9.60 10.33 11.40 17.00 14.67 </td><td>18.33 38.67 71.00 22.00 19.00 17.67 9.60 10.33 11.40 17.00 14.67</td><td>11.2 2.3 0.7 7.1 10.8 11.7 12.2 14.4</td><td>Depth of Penetration (in)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(in) 2.17 6.73 9.53 11.26 13.50 15.59 17.68 19.57 22.01 24.25 26.26 27.99	(mm) 55.00 116.00 71.00 44.00 57.00 53.00 48.00 62.00 57.00 51.00 44.00 	(mm/blow) 18.33 38.67 71.00 22.00 19.00 17.67 9.60 10.33 11.40 17.00 14.67 	18.33 38.67 71.00 22.00 19.00 17.67 9.60 10.33 11.40 17.00 14.67	11.2 2.3 0.7 7.1 10.8 11.7 12.2 14.4	Depth of Penetration (in)							
						- 36 - 42 - 42 - 48 - 54	Avg. CBR	PR = 22.28 = 7 20	mm/blow 40	60	Penetration CBR 80 1	on Rate]
Notes:						- 54	0	20 Pene	40 etration R	60 Rate (mm	80 1 I/blow)	00	120

						Α	uto	mated	Dynamie (/	c Cone ASTM D	Penetro 6951)	ometer	Summa	ary
R	ENOLUTION NEWS	6350 Co Telep Fax N) President lumbus, Ol bhone: (614 lumber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATI JOB CP N E TI	ON CON CON CON CON CON CON CON CON CON C	Ohio Turnp Trumball/M N-14-020(2 RFORMEI	ike Paver lahoning (2) O ⁻ <u>B-4</u> D <u>8/1</u>	nent Repl County, Ol TC PROJ 4-22 5/2014	acement I hio - MP 2 IECT No.	Program 16.25 to 71-14-(<u>221.0</u>)8
	Test Locatio Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'I / Thick.: on:	Sta. 172+33 962.5 ft msl Garret F. Asphalt/Cor 960.67 ft ms	7, 50.8' Lt. hcrete/Slag	, 22 in		Hi Hi Di O Te	ammer 1 ammer V rop Heig utput Filo erminatio	Type: Veight: ht: e Name: on Depth:	Ver 17. 22. N/A 25.	tek Trailc 6 lb 6 in 59 in	or Mounte	ed	
		ADCP Su	ummary						Graphic	al Penetra	ation Rate	Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes	Top of Si	ubgrade 1	0 CI	BR 1	00	1	I,000
5	2.28	58.00	(mm/blow) 11.60	11.60	18.8		0 -		<u> </u>					
15	4.13	47.00	3.13	3.13	81.3	_	-							
10	8.27	47.00	3.92	3.92	40.8 63.3		-	5						
15	10.31	52.00	3.47	3.47	72.6		6 -				$\boldsymbol{\boldsymbol{\leftarrow}}$			_
9	12.44	54.00	6.00 16.67	6.00 16.67	39.3 12.5		-	4			` ₩			
4	16.22	46.00	11.50	11.50	18.9		-							
4	18.66	62.00	15.50	15.50	13.6		- 12 -							_
2	20.16	38.00	19.00	19.00	10.8	-	-							
3	22.52	43.00	20.00	20.00	10.2	-	-							
4	25.59	35.00	8.75	8.75	25.7		-							
							18 -							_
							-			-				
						(in	-							
						ion	- 24 -							_
						trat								
						ene	-							
						f Pe	-							
						o y	30 -							_
						ept	-							
							-							
							- 							
							30 -							
							-							
]	-							
						_	42 -							_
							-							
							-							
							-							
						-	48 -							
							-							
							-	Avg. P	R = 10.74 n	nm/blow	-	-Penetrat	ion Rate	
							54	CBR =	20			CBR		
Notes:						-)	10 2	20 3	30 4	40	50	60
									Pene	tration R	ate (mm/	/blow)		

						Α	utor	nated	Dy	namic (A	Cone	Penet 6951)	rometer	Summ	ary
R	NOUNTER	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	al Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT	DJEC ATIC IOB I P No E TE	CT ON No. o. EST PE	Ohi Trui N-1	o Turnp mball/M 4-020(2 DRMED	ike Paven ahoning () OT <u>B-4</u> 0 <u>9/3</u> /	nent Re County, (IC PRC 4-23 (2014	placement Ohio - MP 2 DJECT No	Program 216.25 to . 71-14-	221.0 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'l / Thick.: on:	Sta. 180+85 952.8 ft msl Ryan B. Asphalt/Cor 950.55 ft ms	5, 50.4' Rt. hcrete/Slag	, 27 in		Ha Ha Dr Ou Te	ammer ammer op Heig utput Fil erminati	Typ Wei ght: le N on [e: ght: lame: Depth:	Ver 17.0 22.0 N/A 32.	tek Trai 3 lb 3 in 17 in	ilor Mount	ed	
		ADCP Su	ummary						(Graphica	al Penetra	tion Rat	te Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes 0	Top of S	ubgi	rade 1	CI 1	BR 0	100		1,000
14 17 11	1.38 3.31 5.47	35.00 49.00 55.00	2.50 2.88 5.00	2.50 2.88 5.00	104.6 89.2 48.1		0 -						1		
3 1 1	7.91 10.75 12.87	62.00 72.00 54.00	20.67 72.00 54.00	20.67 72.00 54.00	8.1 0.7 1.2	-	6 -	~							
1 1 1 2	18.50 20.24 22.99	71.00 71.00 44.00 70.00	71.00 71.00 44.00 35.00	72.00 71.00 44.00 35.00	0.7 0.7 1.8 2.8	-	12					>			
2 2 3	24.92 26.18 27.95	49.00 32.00 45.00	24.50 16.00 15.00	24.50 16.00 15.00	5.8 13.1 14.1	-	-								
3	32.17	46.00	15.33	15.33	13.7	(in)	-								
						enetration	24 -	1		/		7			
						spth of P€	30 -	•				Ċ			
						ă	36 -								
							•								
							42 -								
							48 -								_
						-	54	Avg. I CBR =	PR = = 4	: 31.35 m	m/blow		← Penetrat	tion Rate	
Notes:			·	· .			0		20	4 Penet	o 6 ration R	ate (mr	⁸⁰ n/blow)	100	120

						Α	uto	mated [Dynamio (/	c Cone ASTM D	Penetro 6951)	ometer	Summ	ary
R	E SOURCE INTERN	6350 Co Telep Fax N) President lumbus, Ol bhone: (614 lumber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRO LOC RII \ ADC DAT	DJEC CATI JOB CP N TE T	CT <u>C</u> ON <u>T</u> No. <u>N</u> Io. EST PER	Dhio Turnp Trumball/M I-14-020(2 FORMEI	bike Paven lahoning (2) OT B-4 D <u>8</u> /1	nent Repl County, Ol IC PROJ 4-24 5/2014	acement hio - MP IECT No	Program 216.25 to 0. 71-14-(221.0 08
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevatio	on: vation: sonnel: 'I / Thick.: on:	Sta. 190+95 958.3 ft msl Garret F. Asphalt/Cor 956.3 ft msl	5, 51.1' Lt. hcrete/Slag	, 24 in		H H O T	ammer Tr ammer W rop Heigh utput File ermination	ype: /eight: nt: Name: n Depth:	Ver 17.6 22.6 N/A 26.5	tek Trailc 5 lb 5 in 97 in	or Mount	ted	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration	Penetration per Blow Set	Penetration per Blow	DCPI (mm/blow)	CBR	0 De	notes	s Top of Sul 1	bgrade 1	CE	BR 1	00		1,000
3	(in) 2.95	(mm) 75.00	(mm/blow) 25.00	25.00	5.5	-	0 -			· · ·				"
3	4.92	50.00	16.67	16.67	12.5		•	-						
4	7.20	58.00 37.00	14.50	14.50	14.6	-								
4	10.91	57.00	14.25	14.25	14.9		6			1				
4	12.95	52.00	13.00	13.00	16.5			-	1					
4	14.96	51.00	12.75	12.75	16.9	_				7				
4	17.13	55.00	13.75	13.75	15.5	-		-		📫 👘				
4	21.34	49.00	14.30	12.25	14.0		12 -							
3	22.83	38.00	12.67	12.67	17.0			-	I	I				
5	24.84	51.00	10.20	10.20	21.7		•		1	7				
6	26.97	54.00	9.00	9.00	24.9		40		l ↓	•				
						-	10	-						
							•	-		I				
						l ij			I	I.				
						tio	24 -		7					
						trat			1	•				
						ene		↓ ↓		∖				
						f Pe	•							
						h o	30 -							_
						ept		1						
L						Ď								
						1								
						4	36	-						
						-								
						1	•							
						1	42							
]	42 -							
						4								
						-								
						1	48 -							
]								
						4		Ava. PF	R = 13.91 m	nm/blow		-Penetra	tion Rate	ן ון
						-	•	CBR =	15			-CBR		
						1	54 ·			+		 		늰
Notes:							(v 1	U 2	203 		40 // / ``	50	60
						1			Pene	tration Ra	ate (mm/	(wold		

						A	utor	nated	Dynami (/	c Cone ASTM D	Penetro 6951)	ometer	Summa	ary
RE	NOUNTERN	6350 Co Telep Fax N	Presidenti lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT)jec Atic Iob I P No E te	T (DN] No. <u>1</u> D. ST PEF	Dhio Turnp Frumball/M N-14-020(2 RFORMEI	bike Paver Mahoning (2) O ⁻ 2) <u>B-4</u> D <u>9/3</u> ,	nent Repla County, Oł TC PROJ 4-25 /2014	acement F hio - MP 2 ECT No.	Program 16.25 to 71-14-0	221.0
	Test Locatic Surface Elev Testing Pers Surface Mat Test Elevation	n: vation: sonnel: 'l / Thick.: on:	Sta. 200+02 971.3 ft msl Ryan B. Asphalt/Cor 968.8 ft msl	2, 50.0' Rt. hcrete/Slag	, 30 in		Ha Ha Dr Ou Te	ammer T ammer V op Heig utput File erminatic	ype: Veight: ht: Name: n Depth:	Ver 17. 22. N/A 30.	tek Trailo 6 lb 6 in 39 in	n Mounte	d	
		ADCP Su	Immary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 De	notes 1	Top of Su	ibgrade 1	CI	3R 1	00	1	,000
4 3 3	2.60 4.92 7.17	66.00 59.00 57.00	16.50 19.67 19.00	16.50 19.67 19.00	12.6 10.4 10.8	-	U -	·		7				
3	9.29	54.00	18.00	18.00	11.5		6 -			A				
3 4	11.10	46.00 54.00	15.33	15.33	13.7 15.8					+				
4	15.24	51.00	12.75	12.75	16.9		-		1	k				
3	19.09	46.00	15.33	15.33	13.7		12		<u> </u>	\				
4	21.14	52.00	13.00	13.00	16.5		1		4	\				
4 5	23.03	48.00	12.00	12.00	22.2		-							
5	27.13	54.00	10.80	10.80	20.3				2					
4	28.86 30.39	44.00 39.00	9.75	11.00 9.75	19.9 22.8		18 -		$\mathbf{\mathbf{b}}$					
						ion (in)	24		ţ					
						enetrati	24		ţ					
						of P	30		<u>}</u>	•				
						epth		•	•					
							-							
						-	36 -							
						1	-							
							-							
						-	42 -							
						1	-							
						-	-							
						1	48 -							_
						-	-							
						1	-	Avg. P CBR =	R = 13.8 m 15	m/blow		Penetrati CBR	on Rate	
						-	54							
Notes:]	C		Pene	tration R	ate (mm/	blow)	50	60

						Α	uto	matec	l D	ynamio (/	c Cone ASTM [Pene 06951	etrom	eter :	Summ	ary
R	ESOURCE IN TERM	6350 Co Telep Fax N	President lumbus, Ol bhone: (614 umber: (61	ial Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRC LOC RII J ADC DAT)JEC ATI OB P N E TI	CT ON No. o. EST PE	Oh Tru N-	io Turnp umball/M 14-020(2 ORMEI	bike Pave lahoning 2) O <u>B-4</u> D <u>8</u> /1	ment R County TC PF 14-26 8/2014	eplace , Ohio ROJEC 4	ement F - MP 2 CT No.	Program 16.25 to 71-14-(221.0 08
	Test Locatic Surface Ele Testing Pers Surface Mat Test Elevati	n: vation: sonnel: 'I / Thick.: on:	Sta. 209+53 974.2 ft msl Garret F. Asphalt/Cor 971.53 ft ms	3, 51.2' Lt. hcrete/Slag sl	, 32 in		Hi Hi Di O Te	ammer ammer rop Hei utput F erminat	Typ We ight ile N	be: sight: : Name: Depth:	Ve 17 22 N// 12	rtek Tr .6 lb .6 in A .99 in	railor N	lounte		
		ADCP Su	Immary							Graphic	al Penetr	ation R	ate Plo	ot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Dei	notes	Top of	Subç	grade 1	0 0	BR	100			1,000
4 5 10 11	1.34 3.15 5.20 7.09	34.00 46.00 52.00 48.00	8.50 9.20 5.20 4.36	8.50 9.20 5.20 4.36	26.6 24.3 46.1 56.1	-	U - - - - -	4	J		1					
19 50 50	9.06 11.14 12.99	50.00 53.00 47.00	2.63 1.06 0.94	2.63 1.06 0.94	98.8 273.6 313.0	-	• - -	ł								
						-	12 - - - -	•								
						n (in)	18 - - - -									
						of Penetratic	24 - - - -									
						Depth o	30 - - - -									
						-	36 - - - -									
						-	42 - - -									
						- - -	48 -	Avg. CBR	PR = 53	= 4.56 m	m/blow			enetrati BR	on Rate]
Notes: Ref	usal						54 - ()	10	2 Penet	tration F	30 30 Rate (n	40 nm/ble	ow)	50	 60

						Αι	uton	nated [Dynamio (/	c Cone ASTM D	Penetro 6951)	meter S	Summary	у
R	NOIN	6350 Co Telep Fax N	Presidenti lumbus, Ol bhone: (614 umber: (61	al Gatewa hio 43231 4) 823-49 4) 823-49	ay 49 990	PRO LOC RII J ADC DAT	JEC ATIC OB N P N E TE	T <u>C</u> DN <u>T</u> No. <u>N</u> D. ST PER	Dhio Turnp Trumball/M I-14-020(2 RFORMEI	ike Paven lahoning (2) OT <u>B-4</u> D <u>9/2/</u>	nent Repla County, Of IC PROJ 4-27 (2014	acement P nio - MP 21 ECT No.	rogram 16.25 to 22 ⁻ 71-14-08	1.0
	Test Locatio Surface Elev Testing Pers Surface Mat Test Elevatio	n: vation: sonnel: 'I / Thick.: on:	Sta. 217+83 964.8 ft msl Steve B. Asphalt/Cor 962.97 ft ms	3, 51.0' Rt. hcrete/Slag	, 22 in		Ha Ha Dre Ou Te	Immer T Immer W op Heigh Itput File rminatio	ype: /eight: ht: Name: n Depth:	Ver 17.0 22.0 N/A 29.0	tek Trailo 5 lb 5 in 49 in	r Mounted	d	
		ADCP Su	ummary						Graphic	al Penetra	tion Rate	Plot		
No. of Blows	Cumulative Penetration (in)	Penetration per Blow Set (mm)	Penetration per Blow (mm/blow)	DCPI (mm/blow)	CBR	0 Der	notes 1	Top of Su	bgrade 1	0 0	BR 1	00	1,00	00
9	1.89	48.00	5.33	5.33	44.8			•						
9 3	3.94 6.22	52.00 58.00	5.78 19.33	5.78 19.33	40.9	-	-				I			
3	9.72	89.00	29.67	29.67	3.9									
2	12.76 15.16	77.00	38.50 30.50	38.50 30.50	2.3	-	0							
8	17.05	48.00	6.00	6.00	39.3		-							
28	19.17	54.00	1.93	1.93	139.9		-							
27	21.06	48.00	1.78	1.78	153.3	-	12 -							
27	25.35	58.00	2.15	2.15	124.0		-	<u> </u>						
14	27.48	54.00	3.86	3.86	64.4		1							
10	29.49	51.00	5.10	5.10	47.1	-		-						
							10	∢						
						e l	-	1						
						i) u	1					<u> </u>		
						atio	24 -	I				_		
						etra	-	†				×		
						Pen	1	· ₹						
						of	20	\						
						pth	30							
						De	1							
						-	1							
						1	36							
						-	1							
						1	1							
							12							
						4								
						-	-							
						1								
						4	48							
						-	1							
						1	1	Avg. Pl	R = 11.65 n	nm/blow		-Penetratio	on Rate	
]	5 4	CBR =	19			CBR		
Notes:						-	J4 + 0	1	0 2	:0 3	30 4	0 5	0 60)
									Pene	tration R	ate (mm/	blow)		

APPENDIX I-F

GRAPHICAL OUTPUT OF HISTORIC AND CURRENT CBR VALUES

Ohio Turnpike Pavement Reconstruction Mile Post 216.1 to 221.25 - Project Section 44 Historic and Current Exploration Testing and Analysis

APPENDIX II-A

UNCONFINED COMPRESSIVE STRENGTH REPORTS

ASTM D558, D559, D1633

Client: Ohio Turnpike Commission

	Date:	October 24	, 2014							Project No.:	N-14-020-2				
	Samp ODOT Cla	le Number: assification:	CT-1 A-1-b												
Po	rtland Ceme	ent Content:	0%	3%	5%	7%			Strength Crite	eria (psi):		Che	mical Content R	equired:	Recommended:
ODOT Typ	ical Density	Curve No.:	К	L	L	L		Criterion 1:	Minim	um:	100		3.5%		4.0%
Maxi	mum Dry De	ensity (pcf):	117.0	114.6	114.6	114.6		Criterion 2:	Increase > l	Intreated:	50		2.5%		4.0%
Optimum	n Moisture C	ontent (%):	13.5	14.6	14.6	14.6									
					Average	Average									Average
	Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength

(lbs/in.~)	(lbs/in.*)	(%)	(lbf)	(%)	(lbs/ft°)	(%)	(%)	(in.*)	(inches)	(inches)	(in.~)	(inches)	(inches)	(days)	(%)
	45	98.7	580	14.7	115.4	-	-	-	-	-	12.63	4.56	4.01	0	0%a
45	45	98.6	590	14.7	115.3	-	-	-	-	-	12.65	4.56	4.01	0	0%b
	50	98.7	600	14.8	115.5	-	-	-	-	-	12.62	4.56	4.01	0	0%c
	125	99.9	1590	15.2	114.5		0.1	12.68	4.55	4.02	12.67	4.55	4.02	8	3%a
125	125	99.9	1570	15.2	114.5	0.1	0.1	12.68	4.56	4.02	12.69	4.56	4.02	8	3%b
	120	99.6	1520	15.4	114.1		0.2	12.69	4.56	4.02	12.67	4.56	4.02	8	3%c
	185	99.6	2340	15.6	114.1		0.1	12.69	4.56	4.02	12.70	4.55	4.02	8	5%a
180	185	99.6	2350	15.4	114.2	0.2	0.2	12.71	4.56	4.02	12.69	4.56	4.02	8	5%b
	175	99.7	2230	15.2	114.3		0.2	12.71	4.56	4.02	12.70	4.56	4.02	8	5%c
	185	99.8	2370	15.3	114.4		0.4	12.72	4.56	4.02	12.67	4.56	4.02	8	7%a
205	220	99.7	2820	15.3	114.3	0.2	0.1	12.70	4.55	4.02	12.69	4.55	4.02	8	7%b
	205	00.9	2620	15.2	114.4		0.2	12.60	4.57	4.02	12.69	4.56	4.02	0	7% c

ASTM D3551 / ASTM D698 / ASTM D5102 / ODOT SS 1015

Client: Ohio Turnpike Commission

Date: October 24,	2014						F	Project No.:	N-14-020-2				
Sample Number: ODOT Classification:	CT-2 A-4a												
Quicklime Content:	0%	2%	4%	6%			Strength Crite	eria (psi):		Che	mical Content I	Required:	Recommended:
ODOT Typical Density Curve No .:	К	М	М	М		Criterion 1:	Minim	um:	100		4.5%		
Maximum Dry Density (pcf):	117.00	112.00	112.00	112.00		Criterion 2:	Increase > l	Untreated:	50		4.5%		5.0%
Optimum Moisture Content (%):	13.50	15.80	15.80	15.80		Criterion 3:	Eades-Grin	n Result:	-		2.0%		
		r	Average	Average		r	r						Average
Age of			Moist-	Moist-	Moisture		Average					Unconfined	Unconfined

Chemical Content	Chemical Content	Strength Testing	Average Diameter	Average Height	Area	Cured Diameter	Cured Height	Cured Area	Percent Expansion	Percent Expansion	Dry Unit Weight	Water Content	Maximum Load	Percent Compaction	Compressive Strength	Compressive Strength
(%)	(%)	(days)	(inches)	(inches)	(in.²)	(inches)	(inches)	(in.²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in. ²)	(lbs/in. ²)
0%a		0	4.01	4.56	12.65	-	-	-	-	-	116.8	13.8	520	99.8	40	
0%b	0%	0	4.01	4.56	12.64	-		-	-	-	117.3	13.5	530	100.3	40	40
0%c		0	4.01	4.56	12.65	-		-	-	-	117.5	13.3	520	100.4	40	
2%a		8	4.03	4.56	12.73	4.03	4.56	12.74	0.0		110.3	17.5	850	98.5	65	
2%b	2%	8	4.02	4.56	12.71	4.02	4.56	12.71	0.0	0.1	110.2	17.8	780	98.4	60	65
2%c		8	4.02	4.56	12.70	4.02	4.56	12.69	0.1		110.8	17.5	980	98.9	75	
4%a		8	4.02	4.56	12.71	4.02	4.56	12.71	0.1		110.2	17.7	1160	98.4	90	
4%b	4%	8	4.02	4.57	12.70	4.02	4.57	12.72	0.1	0.1	110.8	17.3	1380	98.9	110	100
4%c		8	4.02	4.57	12.71	4.02	4.58	12.72	0.2		110.7	17.6	1290	98.8	100	
6%a		8	4.02	4.57	12.69	4.02	4.58	12.70	0.2		110.7	17.3	1600	98.9	125	
6%b	6%	8	4.02	4.59	12.69	4.02	4.59	12.72	0.2	0.2	110.9	17.4	1420	99.0	110	120
6%c		8	4.02	4.58	12.68	4.02	4.57	12.67	0.1		110.5	17.5	1490	98.6	120	

ASTM D3551 / ASTM D698 / ASTM D5102 / ODOT SS 1015

Client: Ohio Turnpike Commission

		Date:	October 24	2014						F	Project No.:	N-14-020-2				
		Samp ODOT Cli	ole Number: assification:	CT-3 A-6a												
		Quicklir	ne Content:	0%	2%	4%	6%			Strength Crite	ria (psi):		Che	mical Content R	equired:	Recommended
	ODOT Typ	ical Density	Curve No.:	к	М	М	М		Criterion 1:	Minim	um:	100		3.5%	•	
	Maxi	imum Dry D	ensity (pcf):	117.00	112.00	112.00	112.00		Criterion 1: Minimum: 100 3.5% Criterion 2: Increase > Untreated: 50 3.5%							4.0%
	Optimum	n Moisture C	Content (%):	13.50	15.80	15.80	15.80		Criterion 3:	Eades-Grin	n Result:	-		2.0%		
	1					Average	Average									Average
		Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength
(0()	(0/)	(dovo)	(inchor)	(inchos)	(in ²)	(inchos)	(inchoc)	(in ²)	(0/)	(9/)	(lbs/ft ³)	(0/)	(lbf)	(9/)	(lbs/in ²)	(lbs/in ²)

0%a		0	4.02	4.57	12.66	-	-	-	-	-	116.4	13.6	610	99.5	50	
0%b	0%	0	4.01	4.56	12.64	-	-	-	-	-	116.8	13.3	630	99.8	50	50
0%c		0	4.02	4.56	12.67	-	-	-	-	-	116.7	13.2	620	99.8	50	
2%a		8	4.02	4.57	12.69	4.02	4.58	12.69	0.0		110.8	17.0	1290	98.9	100	
2%b	2%	8	4.02	4.56	12.67	4.02	4.57	12.70	0.3	0.1	109.9	17.8	1170	98.1	90	95
2%c		8	4.02	4.57	12.68	4.02	4.57	12.67	0.0		110.0	17.6	1230	98.2	95	
4%a		8	4.02	4.57	12.68	4.02	4.57	12.69	0.1		110.6	17.2	1440	98.8	115	
4%b	4%	8	4.02	4.58	12.69	4.02	4.58	12.69	0.1	0.2	110.3	17.5	1460	98.5	115	115
4%c		8	4.02	4.56	12.68	4.02	4.56	12.70	0.3		110.7	17.1	1470	98.9	115	
_																
6%a		8	4.02	4.57	12.69	4.03	4.58	12.72	0.3		109.7	17.8	1400	98.0	110	
6%b	6%	8	4.02	4.56	12.69	4.02	4.57	12.67	0.1	0.2	110.4	17.1	1540	98.6	120	115
6%c		8	4.02	4.57	12.68	4.02	4.57	12.70	0.1		109.9	17.8	1410	98.1	110	

Engineering Consultants

SUMMARY OF SOIL-QUICKLIME UNCONFINED COMPRESSIVE STRENGTH DATA

ASTM D3551 / ASTM D698 / ASTM D5102 / ODOT SS 1015

Client: Ohio Turnpike Commission

Project: OTC PR-2

Date: October 24, 2014

Project No.: N-14-020-2

Sample Number: CT-4 ODOT Classification: A-6b

Quicklime Content:	0%	3%	5%	7%		Strength Criteria (psi):		Chemical Content Required:	Recommended:
ODOT Typical Density Curve No.:	0	Q	Q	Q	Criterion 1:	Minimum:	100	3.5%	
Maximum Dry Density (pcf):	107.10	102.40	102.40	102.40	Criterion 2:	Increase > Untreated:	50	2.5%	4.0%
Optimum Moisture Content (%):	18.10	20.30	20.30	20.30	Criterion 3:	Eades-Grim Result:	-	3.0%	

Chemical Content (%)	Chemical Content (%)	Age of Strength Testing (days)	Average Diameter (inches)	Average Height (inches)	Area (in. ²)	Average Moist- Cured Diameter (inches)	Average Moist- Cured Height (inches)	Moisture Cured Area (in. ²)	Percent Expansion (%)	Average Percent Expansion (%)	Dry Unit Weight (lbs/ft ³)	Water Content (%)	Maximum Load (lbf)	Percent Compaction (%)	Unconfined Compressive Strength (lbs/in. ²)	Average Unconfined Compressive Strength (lbs/in. ²)
0%a		0	4.02	4.56	12.66	-	-	-	-	-	105.7	19.3	640	98.7	50	
0%b	0%	0	4.02	4.57	12.66	-	-	-	-	-	105.6	19.5	630	98.6	50	50
0%c		0	4.01	4.56	12.64	-	-	-	-	-	105.5	19.5	640	98.5	50	
3%a		8	4.02	4.56	12.67	4.02	4.57	12.69	0.2		102.3	22.6	1260	99.9	100	
3%b	3%	8	4.02	4.56	12.68	4.02	4.57	12.69	0.2	0.1	101.9	23.1	1360	99.5	105	105
3%c		8	4.02	4.55	12.68	4.02	4.55	12.69	0.0		102.1	23.1	1430	99.7	115	
-														-	-	
5%a		8	4.02	4.56	12.66	4.02	4.56	12.69	0.3		102.4	22.1	1640	100.0	130	
5%b	5%	8	4.02	4.56	12.67	4.02	4.56	12.69	0.2	0.2	102.6	21.7	1760	100.2	140	135
5%c		8	4.02	4.56	12.67	4.02	4.56	12.69	0.3		102.2	22.8	1740	99.8	135	
		-					-	-				-	-			
7%a		8	4.02	4.56	12.70	4.02	4.56	12.72	0.1		102.2	22.4	1670	99.8	130	
7%b	7%	8	4.02	4.56	12.68	4.02	4.56	12.67	0.0	0.2	101.6	23.0	1620	99.2	130	130
7%c		8	4.02	4.57	12.66	4.02	4.57	12.70	0.4		101.8	23.0	1600	99.4	125	

ASTM D558, D559, D1633

Client: Ohio Turnpike Commission

Project: OTC PR-2

Project No.: N-14-020-2

Date: January 11, 2015

Sample Number: CT-5 ODOT Classification: A-7-6

Portland Cement Content:	0%	3%	7%
ODOT Typical Density Curve No.:	R	Ν	Ν
Maximum Dry Density (pcf):	99.9	109.6	109.6
Optimum Moisture Content (%):	21.5	16.9	16.9

	Strength Criteria (psi):		Chemical Content Required:	Recommended:
Criterion 1:	Minimum:	100	3.5%	4.0%
Criterion 2:	Increase > Untreated:	50	3.5%	4.0%

					Average	Average									Average
	Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength
(%)	(days)	(inches)	(inches)	(in. ²)	(inches)	(inches)	(in. ²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in. ²)	(lbs/in. ²)
								-							
0%a	0	4.01	4.56	12.64	-	-	-	-	-	100.4	22.1	560	100.5	45	
0%b	0	4.01	4.55	12.65	-	-	-	-	-	100.5	22.1	580	100.6	45	45
0%c	0	4.01	4.56	12.65	-	-	-	-	-	100.9	21.6	580	101.0	45	
3%a	8	4.01	4.61	12.60	4.01	4.61	12.63	0.3	0.3	108.5	18.4	1400	99.0	110	110
3%b	8	4.01	4.61	12.60	4.01	4.61	12.62	0.2	0.5	108.3	18.5	1400	98.8	110	110
7%a	8	4.01	4.61	12.62	4.01	4.61	12.64	0.2	0.2	108.6	18.4	2040	99.1	160	165
7%b	8	4.01	4.59	12.62	4.01	4.60	12.62	0.1	0.2	108.7	18.1	2090	99.2	165	100

Engineering Consultants

SUMMARY OF SOIL-QUICKLIME UNCONFINED COMPRESSIVE STRENGTH DATA

ASTM D3551 / ASTM D698 / ASTM D5102 / ODOT SS 1015

Client: Ohio Turnpike Commission

Project: OTC PR-2

Date: October 24, 2014 Project No.: N-14-020-2 Sample Number: CT-5 ODOT Classification: A-7-6 Quicklime Content: 0% 3% 5% 7% Strength Criteria (psi): Chemical Content Required: Recommended: 3.5% ODOT Typical Density Curve No.: R s S s Criterion 1: Minimum: 100 4.0% Maximum Dry Density (pcf): 97.40 97.40 97.40 Increase > Untreated: 50 2.5% 99.90 Criterion 2: Eades-Grim Result: 3.0% Optimum Moisture Content (%): 21.50 22.70 22.70 22.70 Criterion 3:

						Average	Average									Average
		Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength
(%)	(%)	(days)	(inches)	(inches)	(in. ²)	(inches)	(inches)	(in. ²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in.2)	(lbs/in.2)
0%a		0	4.01	4.56	12.64	-	-	-	-	-	100.4	22.1	560	100.5	45	
0%b	0%	0	4.01	4.55	12.65	-	-	-	-	-	100.5	22.1	580	100.6	45	45
0%c		0	4.01	4.56	12.65	-	-	-	-	-	100.9	21.6	580	101.0	45	
3%a		8	4.02	4.57	12.69	4.02	4.56	12.69	0.0		97.4	25.2	1590	100.0	125	
3%b	3%	8	4.02	4.57	12.69	4.02	4.57	12.69	0.0	0.1	97.2	25.2	1500	99.8	120	120
3%c		8	4.02	4.57	12.69	4.02	4.57	12.66	0.2		97.0	25.6	1460	99.6	115	
5%a		8	4.02	4.58	12.70	4.02	4.58	12.70	0.2		97.5	24.7	1780	100.1	140	
5%b	5%	8	4.02	4.57	12.68	4.02	4.58	12.68	0.1	0.1	96.7	25.8	1620	99.3	130	135
5%c		8	4.02	4.57	12.68	4.02	4.57	12.70	0.1		97.4	25.1	1620	100.0	130	
7%a		8	4.02	4.57	12.68	4.02	4.57	12.69	0.1		96.9	24.9	1750	99.5	140	
7%b	7%	8	4.02	4.58	12.69	4.02	4.57	12.70	0.0	0.1	96.1	26.0	1710	98.7	135	135
7%c		8	4.02	4.58	12.70	4.02	4.58	12.70	0.1		97.0	25.0	1740	99.5	135	

Engineering Consultants

Recommended: 5.0%

SUMMARY OF SOIL-QUICKLIME UNCONFINED COMPRESSIVE STRENGTH DATA

ASTM D3551 / ASTM D698 / ASTM D5102 / ODOT SS 1015

Client: Ohio Turnpike Commission

Date: October 24,	2014					Project No.:	N-14-020-2	
Sample Number: 0 ODOT Classification: /	CT-6 A-7-6							
Quicklime Content:	0%	2%	4%	6%		Strength Criteria (psi):		Chemical Content Required:
ODOT Typical Density Curve No.:	Р	Q	Q	Q	Criterion 1:	Minimum:	100	4.5%
Maximum Dry Density (pcf):	104.70	102.40	102.40	102.40	Criterion 2:	Increase > Untreated:	50	4.5%
Optimum Moisture Content (%):	19.20	20.30	20.30	20.30	Criterion 3:	Eades-Grim Result:	-	2.0%

Chemical Content (%)	Chemical Content (%)	Age of Strength Testing (days)	Average Diameter (inches)	Average Height (inches)	Area (in. ²)	Average Moist- Cured Diameter (inches)	Average Moist- Cured Height (inches)	Moisture Cured Area (in. ²)	Percent Expansion (%)	Average Percent Expansion (%)	Dry Unit Weight (lbs/ft ³)	Water Content (%)	Maximum Load (lbf)	Percent Compaction (%)	Unconfined Compressive Strength (lbs/in. ²)	Average Unconfined Compressive Strength (lbs/in. ²)
0%a 0%b 0%c	0%	0 0 0	4.01 4.01 4.01	4.56 4.56 4.57	12.65 12.65 12.63	-	-	-	-	-	106.0 105.9 105.7	18.7 18.9 18.8	520 560 550	101.3 101.1 101.0	40 45 45	45
2%a 2%b 2%c	2%	8 8 8	4.02 4.02 4.02	4.58 4.57 4.55	12.67 12.67 12.67	4.02 4.02 4.02	4.57 4.57 4.56	12.69 12.71 12.69	0.1 0.3 0.3	0.2	102.2 101.7 101.5	22.0 22.5 22.8	1070 1080 980	99.8 99.3 99.1	85 85 75	80
4%a 4%b 4%c	4%	8 8 8	4.02 4.02 4.02	4.56 4.57 4.57	12.69 12.70 12.70	4.02 4.02 4.02	4.57 4.58 4.58	12.67 12.69 12.67	0.1 0.0 0.1	0.1	101.6 101.0 101.3	22.2 22.8 22.4	1250 1310 1290	99.2 98.7 98.9	100 105 100	100
6%a 6%b 6%c	6%	8 8 8	4.02 4.02 4.02	4.57 4.57 4.57	12.70 12.70 12.69	4.02 4.02 4.02	4.57 4.58 4.58	12.70 12.68 12.70	0.1 0.1 0.2	0.1	101.8 101.4 101.6	21.5 22.2 21.9	1390 1440 1360	99.4 99.0 99.2	110 115 105	110

ASTM D558, D559, D1633

Client: Ohio Turnpike Commission

Project: OTC PR-2

Project No.: N-14-020-2

Date: January 11, 2015

Sample Number: CT-7

ODOT Classification: A-6b

Portland Cement Content:	0%	3%	5%	7%
ODOT Typical Density Curve No.:	K	K	K	К
Maximum Dry Density (pcf):	117.0	117.0	117.0	117.0
Optimum Moisture Content (%):	13.5	13.5	13.5	13.5

	Strength Criteria (psi):		Chemical Content Required:	Recommended:
Criterion 1:	Minimum:	100	3.5%	4.0%
Criterion 2:	Increase > Untreated:	50	3.5%	4.0%

Chemical Content	Age of Strength Testing	Average Diameter	Average Height	Area	Average Moist- Cured Diameter	Average Moist- Cured Height	Moisture Cured Area	Percent Expansion	Average Percent Expansion	Dry Unit Weight	Water Content	Maximum Load	Percent Compaction	Unconfined Compressive Strength	Average Unconfined Compressive Strength
(%)	(days)	(inches)	(inches)	(in. ²)	(inches)	(inches)	(in. ²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in. ²)	(lbs/in. ²)
0%a	0	4.01	4.60	12.61	-	-	-	-	-	116.5	13.4	640	99.6	50	
0%b	0	4.01	4.59	12.60	-	-	-	-	-	116.1	13.5	620	99.2	50	50
0%c	0	4.00	4.60	12.59	-	-	-	-	-	116.7	13.0	640	99.7	50	
	-	-								-	-	-		-	-
3%a	8	4.01	4.61	12.62	4.01	4.62	12.65	0.5		115.6	14.3	1450	98.8	115	
3%b	8	4.01	4.60	12.64	4.02	4.62	12.66	0.5	0.4	115.8	14.3	1480	98.9	115	115
3%c	8	4.01	4.61	12.64	4.01	4.62	12.65	0.4		115.2	14.6	1500	98.5	120	
5%a	8	4.01	4.60	12.62	4.01	4.61	12.65	0.4		115.2	14.6	1740	98.5	140	
5%b	8	4.01	4.60	12.63	4.01	4.62	12.65	0.6	0.5	114.9	15.1	1670	98.2	130	135
5%c	8	4.01	4.61	12.62	4.01	4.61	12.65	0.5		115.2	14.6	1660	98.5	130	
					-					-				-	
7%a	8	4.01	4.60	12.63	4.01	4.60	12.65	0.3		115.1	14.7	2090	98.4	165	
7%b	8	4.01	4.60	12.64	4.01	4.61	12.64	0.3	0.3	115.3	14.7	2100	98.5	165	170
7%c	8	4.01	4.61	12.64	4.01	4.62	12.65	0.3		115.2	14.8	2190	98.5	175	

FV4-645

ASTM D558, D559, D1633

Client: Ohio Turnpike Commission

Project: OTC PR-2

Project No.: N-14-020-2

Date: January 11, 2015

Sample Number: CT-8 ODOT Classification: A-7-6

Portland Cement Content:	0%	3%	5%	7%		Strength Criteria (psi):		Chemical Content Required:	Recommended:
ODOT Typical Density Curve No.:	Μ	М	М	М	Criterion 1:	Minimum:	100	3.5%	4.0%
Maximum Dry Density (pcf):	112.0	112.0	112.0	112.0	Criterion 2:	Increase > Untreated:	50	2.5%	4.0%
Optimum Moisture Content (%):	15.8	15.8	15.8	15.8					

					Average	Average									Average
	Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength
(%)	(days)	(inches)	(inches)	(in. ²)	(inches)	(inches)	(in. ²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in. ²)	(lbs/in. ²)
0%a	0	4.00	4.60	12.59	-	-	-	-	-	110.6	17.2	600	98.8	50	
0%b	0	4.01	4.60	12.62	-	-	-	-	-	109.7	17.7	590	98.0	45	45
0%c	0	4.01	4.60	12.60	-	-	-	-	-	110.1	17.4	550	98.3	45	
		-										-		-	
3%a	8	4.01	4.60	12.61	4.01	4.60	12.64	0.2		110.1	17.8	1480	98.3	115	
3%b	8	4.01	4.60	12.63	4.01	4.60	12.62	0.0	0.2	109.7	17.7	1520	97.9	120	120
3%c	8	4.01	4.60	12.64	4.01	4.60	12.61	0.2		109.6	17.8	1540	97.9	120	
5%a	8	4.01	4.60	12.62	4.01	4.60	12.63	0.1		110.2	17.8	1710	98.4	135	
5%b	8	4.01	4.59	12.61	4.01	4.59	12.63	0.1	0.2	110.4	17.8	1720	98.5	135	135
5%c	8	4.01	4.59	12.61	4.01	4.60	12.62	0.3		110.0	18.1	1630	98.2	130	
7%a	8	4.01	4.60	12.63	4.01	4.60	12.61	0.1		110.1	17.9	2060	98.3	165	
7%b	8	4.01	4.60	12.62	4.01	4.61	12.62	0.2	0.2	110.2	17.9	1810	98.4	145	155
7%c	8	4.01	4.61	12.62	4.01	4.62	12.62	0.2		110.2	17.9	1890	98.4	150	

FV4-645

ASTM D558, D559, D1633

Client: Ohio Turnpike Commission

Project: OTC PR-2

Project No.: N-14-020-2

Date: January 11, 2015

Sample Number: CT-9 ODOT Classification: A-7-6

Portland Cement Content:	0%	3%	5%	7%		Strength Criteria (psi):		Chemical Content Required:	Recommended:
ODOT Typical Density Curve No.:	0	Ν	Ν	Ν	Criterion 1:	Minimum:	100	2.5%	2.0%
Maximum Dry Density (pcf):	107.1	109.6	109.6	109.6	Criterion 2:	on 2: Increase > Untreated: 50		2.5%	5.0%
Optimum Moisture Content (%):	18.1	16.9	16.9	16.9					

					Average	Average			_						Average
	Age of				Moist-	Moist-	Moisture		Average					Unconfined	Unconfined
Chemical	Strength	Average	Average		Cured	Cured	Cured	Percent	Percent	Dry Unit	Water	Maximum	Percent	Compressive	Compressive
Content	Testing	Diameter	Height	Area	Diameter	Height	Area	Expansion	Expansion	Weight	Content	Load	Compaction	Strength	Strength
(%)	(days)	(inches)	(inches)	(in. ²)	(inches)	(inches)	(in. ²)	(%)	(%)	(lbs/ft ³)	(%)	(lbf)	(%)	(lbs/in. ²)	(lbs/in. ²)
-	-	-	-				-			-	-			-	-
0%a	0	4.01	4.59	12.60	-	-	-	-	-	106.0	19.7	630	99.0	50	
0%b	0	4.00	4.59	12.59	-	-	-	-	-	105.8	19.7	610	98.8	50	50
0%c	0	4.01	4.59	12.61	-	-	-	-	-	105.7	19.9	620	98.7	50	
3%a	8	4.00	4.60	12.59	4.01	4.60	12.61	0.1		106.0	19.9	1670	96.7	130	
3%b	8	4.01	4.59	12.62	4.01	4.60	12.63	0.1	0.2	106.1	19.7	1770	96.8	140	135
3%c	8	4.01	4.60	12.64	4.01	4.60	12.60	0.3		106.1	20.0	1760	96.8	140	
5%a	8	4.01	4.58	12.62	4.01	4.59	12.62	0.0		106.3	19.8	1850	97.0	145	
5%b	8	4.01	4.59	12.62	4.01	4.59	12.62	0.0	0.1	106.0	20.2	1930	96.8	155	150
5%c	8	4.01	4.59	12.62	4.01	4.60	12.62	0.1		105.9	20.0	1860	96.7	145	
7%a	8	4.01	4.59	12.62	4.01	4.60	12.64	0.2		106.0	20.1	2160	96.7	170	
7%b	8	4.01	4.59	12.60	4.01	4.60	12.62	0.2	0.2	106.2	19.7	2120	96.9	170	165
7%c	8	4.01	4.59	12.62	4.01	4.59	12.60	0.1		106.6	19.4	2010	97.3	160	

FV4-645
APPENDIX II-B

SULFATE CONTENT TEST RESULTS

RESOURCE INTERNATIONAL, INC. Engineering Consultants 6350 Presidential Gateway Columbus, OH 43231 Phone: (614) 823-4949 Fax: (614) 823-4990

DETERMINING SULFATE CONTENT IN SOILS - COLORIMETRIC METHOD

TxDOT Tex-145-E

Project Name: OTPRP 71-14-08 MP 216.25 to 221.0 Project No.: N-14-020(2) Client: OTIC Laboratory Technician: Eli Mesko, CET Test Date: September 4, 2014

			Laborato	ry Data	
	Initial Dilution	Ratio:	1:20	*1:40	**1:80 ***1:160
Sample ID	Reading 1	Reading 2	Reading 3	Average Reading	Sulfate Concentration (ppm)
B-44-01	33	34	36	34.33	687
B-44-02	11	10	11	10.67	213
B-44-03	31	33	34	32.67	653
B-44-04	25	26	24	25.00	500
B-44-05	48	46	44	46.00	**3,680
B-44-06	34	36	35	35.00	700
B-44-07	25	26	27	26.00	520
B-44-08	49	52	54	51.67	1,033
B-44-09	38	40	40	39.33	**3,146
B-44-10	55	58	60	57.67	1,153
B-44-12	40	38	42	40.00	800
B-44-14	3	3	3	3.00	60
B-44-15	26	28	27	27.00	540
B-44-16	82	83	84	83.00	1,660
B-44-17	20	21	22	21.00	420
B-44-18	40	42	38	40.00	800
B-44-19	21	21	21	21.00	420
B-44-20	42	40	41	41.00	820
B-44-21	12	12	14	12.67	253
B-44-22	73	76	75	74.67	1,493
B-44-23	47	48	49	48.00	960
B-44-24	24	26	25	25.00	500
B-44-25 19 22			20	20.33	407
B-44-27	39	40	41	40.00	800

APPENDIX II-C

BULK SOIL SAMPLE CLASSIFICATION MATRICES

\frown	U.	.S. 5	SIE	VE O	PE	NI	NG	IN	1 11	۱CF	ΗE	S							l	U.S	S. S	SIE	VE	ΞN	IUN	ИΒ	ER	RS										Ηλ	/DI	R	DM	ΕT	ΈF	२				
				6	4	3	2	2 1	1.5	1	3	/4	/2	3/8	3		1	6	8	10	14	16	20) 3	30	40	50	0 7	70 ¹	100	14	02	00															_
100				I					I				Ι	T	1			-	-+			-		-					I	I	I																	
00						:																									\backslash																	
90]
																										:																						1
80																																		T													-	1
P F						:																				:						T			↑													1
R70 C						:																														\land							1					1
E N					╢	:																										T			╈		4						1					1
^T 60					╈	:		_									:									:						+		+				\frown					┥					1
F N					╈	:		_																		:					_	+	:	+									+					1
E 50 R			+		╫	:		_			:															:	-						:	+	+				_		R		+			\vdash		1
в	+	+	+		+		+	_															$\left \right $	+	$\left \right $:	-		+			+		+	+	-					\parallel			+		-		1
^Y 40	+		_			:		_																-			_				_	+		+					_				ł	-		-		-
W E	+		-		╢	:		_							-									+	$\left \right $:	-		-		_	+		+	+	-	-		_				+	-		╞		-
ы G30	+		_		+	:		_																+	$\left \right $		_		-		_	+	:	+	+	-	_		_				+	_		\vdash		-
T	_					:		_																								+		_					_				_	_		_		-
20	_		_																					_			_		_					+									+	_		_		-
	_					:																		_										_									_			L		-
10						:					:															:																				L		
						:																																					_					1
0														Ŭ												:																						
				[100)							1	0			GF	RAI	IN S	SIZ	ΈI	IN I	I MIL	LLI	IM	ΕT	ER	s			0.	1						(0.0	01							0.0	JUI
		со	BE	BLES	S							G	R/	١V	El	-							S	βA	N	D			<i>c</i> .								s	ILT	- C	DF	2 0	CL	A١	(]
	0						C	02	ars	se			~ ~	t th	in	e T	<u> </u>			fic	C	02	ars	e S	<u> </u>		~~)	1	fin Di	e 0/	N	10	•0/		_			וח			-			_	~_	—		<u> </u>
•	Sh	Jeci	1116 	3-44	-19	<u> </u>	เลเ			_			υ 1 ()		+	<u> </u>		551 A	-6	b		1		4 2	20)		19	70 7		1	, /0 R	+	3	∟ 7		гц 19	-)		1	8			52	-		
			-	-																										-			<u> </u>		•	<u>.</u>					•	•				-		
																																		_												\downarrow		
			•			15								~				_	. = -							Т						%	Gra			0	68	and			0		1				01-	
		5	pe F		en .19	IL)			_		ן נ)6)0	0 2		+		0)5(01) 1	+	L	53	0		+		D)1()	0 (arse	e	fin 1	e g	coar	se R	fin 7	e 6		7	лл Лл				%(3.6	<u>у</u>
H			_	·										-		+				•	+					+					ľ		•		-		-			$\left \right $						- T '		
								-			-					Ţ																																
	20		<u></u>			<u>^</u>	6 /)r	~	24																											<u>-</u>	· N14	_		•		4	01	00 /	<u></u>		
	τU	υĽ		IV		21	0.4	20	-2	21																							ł				1	INC	U			u -1	-+-	.02	(<u> </u>		-
																(G	R	A	D	41	ΓΙ	0	Ν	(Cl	JF	۲۱	/E	ES)																	
															I	RE	S	Ol	UR	CE	ΞI	N٦	ΓE	RI	NA	T	10	NA	۹L,	, IN	IC	•																

APPENDIX II-D

APPLICATION RATE CHARTS

APPLICATION RATE CHARTS - 4.0% PORTLAND CEMENT

	DRY UN	IT WEIG	GHTS 10	5 LBS/F	T ³ TO 1 ⁻	15 LBS/F	T ³				
In-situ Dry Unit Weight (lbs/ft ³)	105.0	106.0	107.0	108.0	109.0	110.0	111.0	112.0	113.0	114.0	115.0
Depth of treatment (inches)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Treatment Area (yd ²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Treatment Area (ft ²)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Volume (ft ³)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Weight of soil per yd ² /depth (lbs)	945.0	954.0	963.0	972.0	981.0	990.0	999.0	1008.0	1017.0	1026.0	1035.0
Cement application rate (%)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Weight of Cement (lbs/yd ²)	37.8	38.2	38.5	38.9	39.2	39.6	40.0	40.3	40.7	41.0	41.4

DRY UNIT WEIGHTS 116 LBS/FT ³ TO 126 LBS/FT ³											
In-situ Dry Unit Weight (lbs/ft ³)	116.0	117.0	118.0	119.0	120.0	121.0	122.0	123.0	124.0	125.0	126.0
Depth of treatment (inches)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Treatment Area (yd ²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Treatment Area (ft ²)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Volume (ft ³)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Weight of soil per yd ² /depth (lbs)	1044.0	1053.0	1062.0	1071.0	1080.0	1089.0	1098.0	1107.0	1116.0	1125.0	1134.0
Cement application rate (%)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Weight of Cement (lbs/yd ²)	41.8	42.1	42.5	42.8	43.2	43.6	43.9	44.3	44.6	45.0	45.4

APPLICATION RATE CHARTS - 5.0% QUICKLIME

	DRY UN	IT WEI	GHTS 10	5 LBS/F	T ³ TO 1 ⁻	15 LBS/F	-T ³				
In-situ Dry Unit Weight (lbs/ft ³)	105.0	106.0	107.0	108.0	109.0	110.0	111.0	112.0	113.0	114.0	115.0
Depth of treatment (inches)	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Treatment Area (yd ²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Treatment Area (ft ²)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Volume (ft ³)	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
Weight of soil per yd ² /depth (lbs)	1102.5	1113.0	1123.5	1134.0	1144.5	1155.0	1165.5	1176.0	1186.5	1197.0	1207.5
Quicklime application rate (%)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Weight of Cement (lbs/yd ²)	55.1	55.7	56.2	56.7	57.2	57.8	58.3	58.8	59.3	59.9	60.4

DRY UNIT WEIGHTS 116 LBS/FT ³ TO 126 LBS/FT ³											
In-situ Dry Unit Weight (lbs/ft ³)	116.0	117.0	118.0	119.0	120.0	121.0	122.0	123.0	124.0	125.0	126.0
Depth of treatment (inches)	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Treatment Area (yd ²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Treatment Area (ft ²)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Volume (ft ³)	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
Weight of soil per yd ² /depth (lbs)	1218.0	1228.5	1239.0	1249.5	1260.0	1270.5	1281.0	1291.5	1302.0	1312.5	1323.0
Quicklime application rate (%)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Weight of Cement (lbs/yd ²)	60.9	61.4	62.0	62.5	63.0	63.5	64.1	64.6	65.1	65.6	66.2

APPENDIX II-E

ODOT TYPICAL MOISTURE-DENSITY CURVES

Typical Moisture Density Curves - Set C - May 1949

Zero Air Voids Curve

For Zero Air Voids Curve, Specific Gravity, $G_s = 2.67$

<u> ITEM SP 536 – CONCRETE WEATHERPROOFING</u>

ALL NEW AND EXPOSED CONCRETE BARRIER SURFACES SHALL RECEIVE A COATING PER SP 536. THE CONCRETE WEATHER PROOFING SHALL ALSO BE USED AS THE CURE COAT. THE FINAL APPEARANCE SHALL BE UNIFORM AND CONSISTENT AND SHALL CONFORM TO ALL PROVISIONS IN SP 536. NO ADDITIONAL PAYMENT SHALL BE MADE IF THE CONTRACTOR IS REQUIRED TO APPLY ADDITIONAL COATINGS TO ACHIEVE A UNIFORM APPEARANCE. THE MATERIAL SHALL BE APPLIED PER THE MANUFACTURER'S RECOMMENDATIONS. ALL LABOR, EQUIPMENT, AND MATERIALS NECESSARY TO COMPLETE THIS WORK SHALL BE INCLUDED IN THE BID PRICE FOR SP 536 - CONCRETE WEATHERPROOFING.

GUARDRAIL REPLACEMENT

Ο

Ο

 \bigcirc

0

NO HAZARD SHALL BE LEFT UNPROTECTED EXCEPT FOR THE ACTUAL TIME NECESSARY TO REMOVE THE EXISTING GUARDRAIL, PREPARE THE SITE, AND INSTALL NEW GUARDRAIL IN A CONTINUOUS OPERATION. THE RÉMOVAL OF ALL GUARDRAIL SHALL AT ALL TIMES BE AS DIRECTED BY THE CHIEF ENGINEER. NO GUARDRAIL SHALL BE REMOVED UNTIL THE REPLACEMENT MATERIAL IS ON THE SITE, READY FOR INSTALLATION. FAILURE TO COMPLY WITH THIS REQUIREMENT SHALL BE DEEMED SUFFICIENT CAUSE TO ORDER WORK SUSPENDED UNTIL SUCH TIME AS THE CHIEF ENGINEER IS ASSURED OF COMPLIANCE.

GUARDRAIL BEHIND CURBS

WHERE A CURB IS PROVIDED AT THE OUTER EDGE OF THE PAVED SHOULDER. ANY NECESSARY GUARDRAIL SHALL BE POSITIONED SO THAT THE FACE OF THE GUARDRAIL IS LOCATED FLUSH WITH THE FACE OF CURB AND THE TOP OF THE RAIL SHALL BE 31" ABOVE THE GUTTER LINE.

CONNECTION BETWEEN EXISTING AND PROPOSED GUARDRAIL

WHEN IT IS NECESSARY TO SPLICE PROPOSED GUARDRAIL TO EXISTING GUARDRAIL, ONLY THE EXISTING GUARDRAIL SHALL BE CUT, DRILLED, OR PUNCHED. THE CONNECTION SHALL BE MADE USING A 'W-BEAM RAIL SPLICE' AS SHOWN ON ODOT STANDARD CONSTRUCTION DRAWING MGS-1.1. THE TRANSITION IN HEIGHT WILL OCCUR IN THE LAST TWENTY FIVE (25) FEET OF EXISTING GUARDRAIL. PAYMENT SHALL BE INCLUDED IN THE CONTRACT PRICE FOR THE RESPECTIVE GUARDRAIL ITEMS.

AN ITEM FOR TWENTY FIVE (25) FEET OF GUARDRAIL REBUILT HAS BEEN INCLUDED AT EACH LOCATION WHERE THERE IS A CONNECTION TO EXISTING GUARDRAIL.

<u> ITEM 202 - GUARDRAIL REMOVED, AS PER PLAN</u>

THIS ITEM SHALL INCLUDE REMOVAL OF ALL GUARDRAIL, ANCHOR ASSEMBLIES, TERMINAL ASSEMBLIES AND APURTENANCES. THE FOLLOWING PORTIONS OF GUARDRAIL SHALL REMOVED FOR BE SALVAGE:

EXISTING TYPE E (ET-2000PLUS) ANCHOR ASSEMBLY EXTRUDER HEAD, CABLE ANCHOR ANGLE STRUT, CABLE ASSEMBLY, BEARING PLATE, TWO TUBE SLEEVES, AND THE FIRST TWO GUARDRAIL PANELS. THE CONTRACTOR SHALL USE CARE IN THE REMOVAL PROCESS TO MINIMIZE DAMAGE TO THE MATERIALS.

ALL SALVAGED MATERIAL SHALL BE DELIVERED TO THE HIRAM MAINTENANCE BUILDING AT MP 198.6. OTIC WILL PROVIDE A FORKLIFT AND AN OPERATOR AT THE MAINTENANCE FACILITY.

ALL OTHER MATERIALS REMOVED SHALL BE DISPOSED OF BY THE CONTRACTOR IN ACCORDANCE WITH ITEM 202.

ITEM 606 - IMPACT ATTENUATOR, TYPE 1, (BIDIRECTIONAL), AS PER PLAN

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING ONE (1) OF THE FOLLOWING IMPACT ATTEANUATORS FROM THE OFFICE OF ROADWAY ENGINEERING'S APPROVED LIST FOR IMPACT ATTEANUTORS, FROM THE ROADWAY STANDARD'S WEB PAGE FOR ROADWAY STANDARD PRODUCTS:

- BRAKEMASTER 350, BY ENERGY ABSORPTION, INC
- CAT, BY TRINITY INDUSTRIES, INC.

ALL IMPACT ATTENAUTORS SHALL BE SUBMITTED TO THE CHIEF ENGINEER FOR APPROVAL BEFORE INSTALLATION.

INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.

ITEM 203 - ROCK EXCAVATION FOR UNDERDRAIN INTALLATION, AS PER PLAN

BASED ON THE SUBSURFACE INVESTIGATION, THE CONTRACTOR MAY ENCOUNTER BEDROCK BETWEEN MILEPOSTS (MP) 218.10 TO MP 218.46 AND MP 220.74 TO MP 220.89. BEDROCK SHALL BE DEFINED AS SHALE AS DETERMINED BY THE COMMISSION'S REPRESENTATIVE. THE CONTRACTOR IS TO REFER TO THE GEOTECHNICAL REPORT TO REVIEW THE POSSIBLE EXTENT OF ROCK EXCAVATION. THE ROCK EXCAVATION QUANTITY IS PAYMENT FOR THE DIFFERENCE TO EXCAVATE ROCK INSTEAD OF SOIL. THEREFORE, THE CONTRACTOR SHALL BE PAID FOR ITEM SP605 PLUS THE EQUAL NUMBER OF CUBIC YARDS OF ITEM 203 - ROCK EXCAVATION FOR UNDERDRAIN INSTALLATION, APP. THIS PAY ITEM SHALL INCLUDE THE REQUIRED METHOD TO REMOVE THE ROCK TO INSTALL NEW CONSTRUCTION OR TO EXCAVATE TO THE DEPTHS SHOWN ON PLANS. MEASUREMENT FOR PAYMENT SHALL BE PER CUBIC YARD.

THE FOLLOWING ESTIMATED QUANTITY HAS BEEN CARRIED TO THE GENERAL SUMMARY FOR USE AS DIRECTED BY THE ENGINEER THIS WORK.

ITEM 203 - ROCK EXCAVATION FOR UNDERDRAIN INSTALLATION, AS PER PLAN <u>1,650 CY</u>

ITEM 203 - EXCAVATION, AS PER PLAN

THIS ITEM SHALL CONSIST OF THE REMOVAL AND REPLACEMENT OF THE FULL DEPTH OF ALL SLAG MATERIAL COURSES ENCOUNTERED WITHIN THE LIMITS OF SUBGRADE COMPACTION AREAS WITH MATERIAL CONFORMING TO 203.02. FILL MATERIAL SHALL CONFORM TO 203.02 AND BE PLACED ACCORDING TO 203.06.

APPROXIMATE SLAG EXCAVATION LIMITS (LOCATION AND DEPTH) ARE IDENTIFIED IN THE PAVEMENT LAYER THICKNESS MEASUREMENT INSPECTION REPORT DATED SEPTEMBER 12, 2014.

APPROXIMATE SLAG EXCAVATION AND EMBANKMENT QUANTITIES AS SHOWN IN THE SUB-SUMMARY ARE BASED UPON THIS INSPECTION REPORT.

THE FOLLOWING ADDITIONAL ESTIMATED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMARY FOR USE AS DIRECTED BY THE ENGINEER FOR REMOVAL AND REPLACEMENT OF THE SLAG MATERIAL COURSE.

TEM 203 - EXCAVATION, AS PER PLAN	<u>4,000 CY</u>
TEM 203 - EMBANKMENT	<u>4,000 CY</u>

<u>BENCHING OF SLOP</u>ES

ALTHOUGH CROSS-SECTIONS DO NOT INDICATE SPECIFIC DIMENSIONS FOR PROPOSED BENCHING OF THE EMBANKMENT FOUNDATION, NO WAIVER OF THE SPECIFICATIONS IS INTENDED. ALL SLOPED EMBANKMENT AREAS SHALL BE BENCHED AS SET FORTH IN 203.05. NO ADDITIONAL PAYMENT WILL BE MADE FOR BENCHING REQUIRED UNDER THE PROVISIONS OF 203.05. SEE BENCHING DETAIL, SLOPE REPAIR DETAIL INSERT SHEET.

ITEM 206 - CHEMICALLY STABILIZED SUBGRADE, AS PER PLAN

THIS WORK SHALL COMPLY WITH ALL REQUIREMENTS SPECIFIED IN ITEM 206 - CHEMICALLY STABILIZED SUBGRADE OF ODOT 2013 CMS EXCEPT AS NOTED BELOW:

ITEM 206.03 SUBMITTALS: MIXTURE DESIGN FOR CHEMICALLY STABILIZED SOILS IS NOT REQUIRED BY THE CONTRACTOR.

ITEM 206.05 CONSTRUCTION

A. SPREADING - USE AN APPLICATION RATE OF 4% PORTLAND CEMENT BY DRY UNIT WEIGHT FOR SOIL-CEMENT STABILIZAITON AREAS AND 5% QUICKLIME BY DRY UNIT WEIGHT FOR SOIL-LIME STABILIZATION AREAS. THE APPLICATION RATE WILL VARY DEPENDING ON THE IN-SITU DRY UNIT WEIGHT OF THE SOIL. QUANTITIES FOR PORTLAND CEMENT STABILIZATION AREAS ARE BASED ON AN IN-SITU DRY UNIT WEIGHT OF 115 LBS/FT3, AND QUANTITIES FOR QUICKLIME STABILIZATION ARE BASED ON AN IN-SITU DRY UNIT WEIGHT OF 110 LBS/FT3. LIMITS OF THE STABILIZATION AREAS ARE LISTED IN THE FOLLOWING TABLE:

	BEGIN	END	LENGTH	CHEMICAL &	DEPTH
	<u>STATION</u>	<u>STATION</u>	(FEET)	<u>APPLICATION RATE</u>	(<u>INCHES)</u>
~	528+85	47+00	8233	5% QUICKLIME	14
	47+00	93+60	4660	4% PORTLAND CEMENT	12
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	93+60 - <del>167+85</del> - <del>176+60</del>	204+80 	11120 	5% QUICKLIME PORTLAND CEMENT QUICKLIME	14 -12 -14
{	204+80	237+19	3239	4% PORILAND CEMENT	12 3

B. CURING - THE TREATED AREA SHALL BE SHAPED TO THE REQUIRED LINES, GRADES, AND CROSS-SECTION AND FINAL COMPACTION USING A SMOOTH DRUM ROLLER WEIGHING AT LEAST 10 TONS AND SHALL CONTINUE UNTIL UNIFORM AND THE REQUIRED COMPACTION IS OBTAINED. UNIFORMLY APPLY CURING COAT ON THE SURFACE OF THE CHEMICALLY STABILIZED SOIL SUBGRADE. COMPLETED SECTIONS OF THE STABILIZED SUBGRADE THAT ARE USED DURING THE CONSTRUCTION OF ADJOINING SECTIONS SHALL BE PROTECTED TO PREVENT EQUIPMENT FROM MARRING OR DAMAGING THE COMPLETED WORK. THE STABILIZED SOIL SUBGRADE SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC UNTIL ACCEPTANCE OF THE STABILIZED SOIL SUBGRADE.THE ACCEPTANCE OF THE STABILIZED SOIL SUBGRADE WILL BE EVALUATED AFTER 72 HOURS OF CURING AS DETERMINED IN ITEM - PROOF ROLLING. SUFFICIENT PROTECTION FROM FREEZING SHALL BE GIVEN TONTHE CHEMICALLY STABILIZED MATERIAL FOR 7 DAYS AFTER ITS CONSTRUCTION OR AS APPROVED BY THE CHIEF ENGINEER. THE CONTRACTOR SHALL REPAIR ANY STABILIZED SOIL SUBGRADE CAUSED BY CONSTRUCTION TRAFFIC AND OPERATIONS AT THE CONTRACTOR'S OWN COST. THE CONTRACTOR SHALL SUBMIT THE PROPOSED SUBGRADE REPAIR METHOD TO THE CHIEF ENGINEER FOR APPROVAL.

- BOTTOM OF THE EXCAVATION.
- EXCAVATION.



F. SOIL-STABILIZATION AT CULVERTS 1. BOX CULVERTS WHERE DEPTH OF COVER IS GREATER THAN 4 FEET: CHEMICALLY STABILIZE ACCORDING TO PROJECT DOCUMENTS

2. BOX CULVERTS WHERE DEPTH OF COVER IS BETWEEN 2-4 FEET: EXCAVATE 12 INCHES OF THE EXPOSED SOIL SUBGRADE FROM 20 FEET BEYOND BOTH ENDS OF THE BOX CULVERT AND THE SPREAD THE EXCAVATED SOIL IN THE AREA TO BE CHEMICALLY STABILIZED. PERFORM CHEMICAL STABILIZATION ON THE EXCAVATED SOIL USING THE SAME REQUIREMENTS AS THE ADJACENT SUBGRADE. AFTER CHEMICALLY STABILIZING THE EXCAVATED SOIL, PLACE THE EXCAVATED SOIL BACK IN THE EXCAVATION FROM 20 FEET BEYOND BOTH ENDS OF THE BOX CULVERT AND COMPACT ACCORDING TO THE PROJECT SPECIFICATIONS.

C. PROOF ROLLING - AFTER THE INITIAL 72-HOUR CURE PERIOD AND AT THE CONTRACTOR'S REQUEST, THE COMMISSION'S AGENT WILL USE A DUAL-MASS DYNAMIC CONE PENETROMETER (DCP) TO MEASURE THE PENETRATION RATE (PR) IN MM/BLOW OF THE STABILIZED SOIL SUBGRADE THROUGH THE TOTAL TREATMENT DEPTH. TESTING SHALL BE CONDUCTED EVERY 200 LINEAR FEET.

1. IF THE AVERAGE PR IS ABOVE 8 MM/BLOW THE CURE PERIOD SHALL BE EXTENDED FOR 2 DAYS FOLLOWED BY TEST ROLLING PER ODOT ITEM 206. 2. IF THE AVERAGE PR IS 8 MM/BLOW OR LOWER THE CONTRACTOR SHALL PROCEED WITH TEST ROLLING PER ODOT ITEM 206 FOR FINAL ACCEPTANCE OF THE STABILIZED SUBGRADE.

D. PROTECTION - ALL THE PROVISIONS OF 206.05 PARAGRAPH F APPLY AS WELL AS THE FOLLOWING: COMPLETED AND ACCEPTED PORTIONS OF THE STABILIZED SOIL SUBGRADE THAT ARE TRAVELED ON BY EQUIPMENT USED IN CONSTRUCTING ANY OTHER SECTION, OR ANY OTHER WORK, SHALL BE PROTECTED IN SUCH A MANNER AS TO PREVENT EQUIPMENT AND OPERATIONS FROM MARRING OR DAMAGING THE SUBGRADE IN ANY WAY. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR ANY DAMAGE AND IS REQUIRED TO REPAIR THE STABILIZED SOIL SUBGRADE THAT ARISES DUE TO HIS OPERATIONS.

E. IN CASES WHERE SUBGRADE STABILITY USING SOIL STABILIZATION IS NOT EFFECTIVE AS DETERMINED BY PROOF ROLLING AND CONCURRENCE BY THE CHIEF ENGINEER. THE AREA SHALL BE UNDERCUT USING THE FOLLOWING CHART FROM ODOT GEOTECHNICAL BULLETIN 1, BASED ON THE RUT DEPTH FROM PROOF ROLLING:

1. IF THE REPLACEMENT IS LESS THAN 16 INCHES IN DEPTH, PLACE GEOGRID AT THE

2. IF THE REPLACEMENT IS 16 INCHES OR GREATER, PLACE THE GEOGRID IN THE MIDDLE OF THE GRANULAR MATERIAL AND THE GEOTEXTILE FABRIC ON THE BOTTOM OF THE



#### ROADWAY (CONTINUED)

#### ITEM 206 - CHEMICALLY STABILIZED SUBGRADE (CONT'D)

#### 3. BOX CULVERTS WHERE DEPTH OF COVER IS LESS THAN 2 FEET: EXCAVATE 16 INCHES OF THE EXPOSED SOIL SUBGRADE FROM THE EDGE OF THE BOX CULVERT TO 20 FEET BEYOND THE END OF THE BOX CULVERT AND SPREAD THE EXCAVATED SOIL IN AN AREA TO BE CHEMICALLY STABILIZED. PERFORM CHEMICAL STABILIZATION ON THE EXCAVATED SOIL USING SAME REQUIREMENTS AS THE ADJACENT SUBGRADE. AFTER CHEMICALLY STABILIZING THE EXCAVATED SOIL, PLACE THE EXCAVATED SOIL BACK IN THE EXCAVATION FROM THE EDGE OF THE BOX CULVERT TO 20 FEET BEYOND THE BOX CULVERT AND COMPACT ACCORDING TO PROJECT

#### SPECIFICATIONS.

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

Ο

COMPACT THE EXISTING SUBGRADE MATERIAL OVER THE BOX CULVERT USING A NON-VIBRATORY ROLLER AND TEST FOR PERCENT COMPACTION ACCORDING TO THE PROJECT SPECIFICATIONS. DO NOT PROOF ROLL. IF THE COMPACTED SOIL DOES NOT MEET THE SPECIFICATION REQUIREMENTS FOR DENSITY, THE ENGINEER WILL DELINEATE THE AREA TO BE UNDERCUT AND BACKFILL WITH ITEM SP304 MATERIAL.

FOR ALL SCENARIOS LISTED ABOVE IN AREAS INACCESSIBLE TO THE SPECIFIED COMPACTION EQUIPMENT, THE CONTRACTOR SHALL ENSURE THAT THE SPECIFIED COMPACTION IS OBTAINED USING OTHER SUITABLE EQUIPMENT.

PAYMENT FOR EXCAVATION AND EMBANKMENT REQUIRED TO COMPLETE THE STABILIZATION IN THE AREAS SHALL BE INCLUDED IN AND INCIDENTAL TO ITEMS 206 -CEMENT STABILIZED SUBGRADE, 12 INCHES DEEP, OR 206 - LIME STABILIZED SUBGRADE, 14 INCHES DEEP, AS PER PLAN.

#### SHALLOW BEDROCK STABILIZATION

THIS WORK SHALL COMPLY WITH ALL REQUIREMENTS SPECIFIED IN ITEM 203 - ROADWAY EXCAVATION AND EMBANKMENT OF ODOT 2013 CMS EXCEPT AS NOTED BELOW:

- 1. STABILIZE 12 INCHES THROUGH THE SHALLOW BEDROCK AREA UNTIL 12 INCHES OF STABILIZATION CANNOT BE ACHIEVED PER ODOT ITEM 206.
- 2. EXCAVATE BEDROCK TO A DEPTH OF 12 INCHES BELOW PLAN SUBGRADE ELEVATION.
- 3. BACKFILL UNDERCUT EXCAVATIONS WITH BORROW SOIL MEETING THE REQUIREMENTS OF 203.02 AND 203.03 AND SHALL HAVE A SULFATE CONTENT LESS THAN 3,000 PPM AS DETERMINED BY TEX-145-E METHOD. FURNISH THE CHIEF ENGINEER WITH BULK SOIL SAMPLES FOR EVERY 2,000 CY OF EACH SOIL TYPE OBTAINED FROM A GIVEN BORROW SITE. ALLOW 7 DAYS FOR CHIEF ENGINEER TO PERFORM SULFATE CONTENT OF PROPOSED BORROW MATERIALS.
- 4. BACKFILL UNDERCUT EXCAVATIONS ACCORDING TO 203.07
- 5. CHEMICALLY STABILIZE EMBANKMENT PER ODOT ITEM 206 USING 4% PORTLAND CEMENT BY DRY UNIT WEIGHT AT A TREATMENT DEPTH OF 10 INCHES.

THE FOLLOWING QUANTITIES HAVE BEEN INCLUDED IN THE GENERAL SUMMARY FOR THE WORK DESCRIBED ABOVE FOR THE REMOVAL AND REPLACEMENT OF SHALLOW BEDROCK:

ITEM 203 – ROCK EXCAVATION, AS PER PLAN	<u>18,850 CY</u>
ITEM 203 – EMBANKMENT, AS PER PLAN	<u>18,850 CY</u>

THE FOLLOWING QUANTITIES HAVE BEEN INCLUDED IN THE GENERAL SUMMARY FOR THE WORK UNDER ITEM 206 - CHEMICALLY STABILIZED SUBGRADE, AS PER PLAN:

ITEM 206 - LIME STABILIZED SUBGRADE, 14 INCHES DEEP, AS PER PLAN	<u>175,700 SY</u> ▲
ITEM 206 - LIME	<u>5,090 TON</u>
ITEM 206 - CEMENT STABILIZED SUBGRADE, 12 INCHES DEEP, AS PER PLAN	76,140 SY
ITEM 206 - CEMENT	<u>1,590 TON</u>
ITEM 206 - CURING COAT	15,110 GAL
ITEM 206 - TEST ROLLING	130 HOURS

THE FOLLOWING CONTINGENCY QUANTITIES SHALL BE USED TO UNDERCUT AND REPLACE THE UNSTABLE SUBGRADE SOILS AS DESCRIBED ABOVE. THE FOLLOWING QUANTITIES ARE BASED ON 100 LF X 24 FT WIDE X 2 FT DEEP AREA:

ITEM 204 – EXCAVATION	<u>178 CY</u>
ITEM SP304 - GRANULAR MATERIAL	<u>178 CY</u>
ITEM 204 - SUBGRADE COMPACTION	<u>267 SY</u>
ITEM 204 - GEOTEXTILE FABRIC, 712.09 TYPE D	<u>267 SY</u>
ITEM 861 - GEOGRID FOR SUBGRADE STABILIZATION,AS PER PLAN,	
TENSAR TRIAX 160 GEOGRID	<u>267 SY</u>

#### ITEM 209 - DITCH CLEANOUT

THIS ITEM SHALL CONSIST OF FIELD SURVEY, CLEARING, EXCAVATION AND EMBANKMENT AS NECESSARY TO REESTABLISH THE CROSS SECTION OF THE EXISTING DITCHES AS DIRECTED BY THE CHIEF ENGINEER. THIS ITEM SHALL ALSO CONSIST OF THE REPLACEMENT OF ANY EXISTING DITCH CHECKS THAT MAY HAVE BEEN INSTALLED BY THE CONTRACTOR PER THE EXISTING DITCH CHECKS THAT MAY HAVE BEEN INSTALLED BY THE CONTRACTOR PER THE STORM WATER POLLUTION PREVENTION PLAN PRIOR TO PERFORMANCE OF DITCH CLEANOUT WORK. PAYMENT FOR THIS ITEM WILL BE AT UNIT BID PRICE PER LINEAR FOOT FOR ITEM 209 - DITCH CLEANOUT AND SHALL INCLUDE ALL LABOR, EQUIPMENT AND MATERIALS NECESSARY TO COMPLETE THIS ITEM. ALL MAINTENANCE OF TRAFFIC NECESSARY TO COMPLETE THIS ITEM SHALL BE CONSIDERED INCIDENTAL TO ITEM SP 614 - MAINTAINING TRAFFIC.

5000 FT

THE FOLLOWING CONTINGENCY QUANTITY IS PROVIDED IN THE GENERAL SUMMARY IN ADDITION TO THAT CALLED OUT ELSEWHERE FOR USE AS DIRECTED BY THE ENGINEER.

ITEM 209 - DITCH CLEANOUT

#### ITEM 606 - ANCHOR ASSEMBLY, MGS TYPE E, AS PER PLAN

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING ANY OF THE GUARDRAIL END TERMINALS FOR TYPE MGS GUARDRAIL AS LISTED ON ODOT ROADWAY ENGINEERING'S WEB PAGE UNDER ROADSIDE SAFETY DEVICES FOR APPROVED GUARDRAIL END TREATMENTS. INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS, IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. INSTALL THIS ASSEMBLY AT A 25:1 MAXIMUM FLARE RATE SO THAT THE INSIDE EDGE OF THE IMPACT HEAD IS NO CLOSER THAN 6 INCHES FROM THE OUTER EDGE OF THE SHOULDER.

THE COMMISSION SHALL SUPPLY A TYPE G REFLECTIVE SHEETING PER CMS 730.19 MOUNTED ON A PIECE OF ALUMINUM. THE CONTRACTOR SHALL RIVET THE ALUMINUM TO THE FACE OF THE TYPE E IMPACT HEAD.

REFER TO THE MANUFACTURER'S INSTRUCTIONS REGARDING THE INSTALLATION OF, AND THE GRADING AROUND THE FOUNDATION TUBES AND GROUND STRUT. THE TOP OF ANY FOUNDATION TUBE SHOULD BE LESS THAN 4 INCHES ABOVE THE GROUND. THE PLACEMENT OF THE FOUNDATION TUBES SHOULD BE AN APPROPRIATE DEPTH BELOW THE LEVEL LINE IN ORDER TO MAINTAIN THE FINISHED GUARDRAIL HEIGHT OF 31 INCHES FROM THE EDGE OF THE SHOULDER.

ON SITE GRADING IS REQUIRED IF THE TOP OF THE FOUNDATION TUBES OR TOP OF THE GROUND STRUT DOES NOT PROJECT MORE THAN 4 INCHES ABOVE THE GROUND LINE. PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID FOR ITEM 606. ANCHOR ASSEMBLY, MGS TYPE E, AS PER PLAN, AND SHALL INCLUDE ALL LABOR, TOO EQUIPMENT AND MATERIALS NECESSARY TO CONSTRUCT A COMPLETE AND FUNCTIONAL TOOLS, ANCHOR ASSEMBLY SYSTEM, INCLUDING ALL RELATED TRANSITIONS, REFLECTIVE SHEETING, HARDWARE, GRADING, EMBANKMENT AND EXCAVATION NOT SEPARATELY SPECIFIED, AS REQUIRED BY THE MANUFACTURER.

#### ITEM 617 - SHOULDER PREPARATION, AS PER PLAN

IN ADDITION TO THE REQUIREMENTS OF ITEM 617.04 OF THE SPECIFICATIONS, THE CONTRACTOR SHALL PERFORM THE FOLLOWING:

THE SUBGRADE SHALL BE COMPACTED IN ACCORDANCE WITH ITEM 204 - SUBGRADE COMPACTION IMMEDIATELY PRIOR TO PLACING THE AGGREGATE AND AFTER THE SUBGRADE IS SHAPED OR BLADED TO GIVE A STRAIGHT VERTICAL EDGE WITH THE ADJACENT DIRT. THE ENTIRE THICKNESS OF AGGREGATE SHALL BE SUPPORTED ALONG THE OUTER EDGE WITH TOPSOIL AND FILL DIRT THAT IS CONSISTENT WITH THE FORE SLOPE.

PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID PER SQUARE YARD FOR ITEM 617- SHOULDER WORK PREPARATION, AS PER PLAN, AND SHALL INCLUDE ALL LABOR, TOOLS, EQUIPMENT AND MATERIALS NECESSARY TO COMPLETE THIS WORK.

#### ITEM SPECIAL - CONCRETE CHANNEL CLEANOUT

THIS WORK SHALL CONSIST OF REMOVING SEDIMENT AND DEBRIS FROM THE EXISTING CONCRETE CHANNEL SPECIFIED IN THE PLANS. ALL MATERIAL REMOVED SHALL BE DISPOSED OF AS PER SP 105. ALL EXISTING CONCRETE CHANNELS SHALL BE CLEANED OUT TO THE SATISFACTION OF THE CHIEF ENGINEER.

CLEANOUT OF THE CONCRETE CHANNEL SHALL BE PAID FOR AT THE UNIT PRICE BID FOR ITEM SPECIAL - CONCRETE CHANNEL CLEANOUT, FOOT. THIS PRICE SHALL INCLUDE THE COST FOR MATERIAL DISPOSAL, EQUIPMENT, LABOR AND ALL INCIDENTALS REQUIRED TO COMPLETE THE CLEANOUT.

#### ITEM SPECIAL - CHANNEL CLEANOUT

THIS WORK SHALL CONSIST OF REMOVING SEDIMENT AND DEBRIS FROM THE EXISTING CHANNELS SPECIFIED IN THE PLANS. ALL MATERIAL REMOVED SHALL BE DISPOSED OF AS PER SP 105. ALL CHANNELS SPECIFIED SHALL BE CLEANED OUT TO THE SATISFACTION OF THE CHIEF ENGINEER.

CLEANOUT OF THE CHANNEL SHALL BE PAID FOR AT THE UNIT PRICE BID FOR ITEM SPECIAL - CHANNEL CLEANOUT, SQ YD. THIS PRICE SHALL INCLUDE THE COST FOR MATERIAL DISPOSAL, EQUIPMENT, LABOR AND ALL INCIDENTALS REQUIRED TO COMPLETE THE CLEANOUT.

## ITEM 202 - FENCE REMOVED

THE FOLLOWING QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMARY:

ITEM 202 - FENCE REMOVED

REMOVAL.

#### EROSION CONTROL

#### SEEDING & MULCHING

THE FOLLOWING QUANTITIES ARE PROVIDED TO PROMOTE GROWTH AND CARE OF PERMANENT SEEDED AREAS:

ITEM 659 - SOIL ANALYSIS TEST ITEM 659 - TOPSOIL ITEM 659 - SEEDING AND MULCHING ITEM 659 - REPAIR SEEDING AND MULCHING ITEM 659 - INTER-SEEDING ITEM 659 - COMMERCIAL FERTILIZER ITEM 659 - LIME ITEM 659 - WATER

ITEM 659 - TOPSOIL IS ONLY APPLICABLE WHEN TOPSOIL IS PHYSICALLY REMOVED FROM THE SLOPES AND MOVED TO A CONSTRUCTED TOP SOIL STOCK PILE SOLELY FOR THE PURPOSE OF TEMPORARY STORAGE PRIOR TO REUSE. SEEDING AND MULCHING SHALL BE APPLIED TO ALL AREAS OF EXPOSED SOIL BETWEEN THE RIGHT-OF-WAY LINES, AND WITHIN APPLIED TO ALL AREAS OF EXPOSED SOIL BETWEEN THE RIGHT-OF-WAT LINES, AND WITHIN THE CONSTRUCTION LIMITS FOR AREAS OUTSIDE THE RIGHT-OF-WAY LINES COVERED BY WORK AGREEMENT OR SLOPE EASEMENT. OUANTITY CALCULATIONS FOR SEEDING AND MULCHING ARE BASED ON AN ASSUMED LIMIT 10' BEYOND THE EDGE OF THE OUTSIDE SHOULDER FOR THE LENGTH OF THE PROJECT, THE 32' MEDIAN WIDTH, A WIDTH OF 20' PER RUNNING FOOT OF DITCH CLEANOUT, SLOPE REPAIR AREAS, AND ON THE SLOPES WHERE DRAIN PIPE PLACEMENT OCCURS. FOR THE PURPOSES OF THE DRAIN PIPE PLACEMENT AREA CALCULATIONS, A WIDTH OF 30' AND A LENGTH OF 37' WAS ASSUMED FOR EACH OF THE PIPE PLACEMENT AREAS AND A WIDTH OF 10' AND A LENGTH OF 10' WAS ASSUMED FOR EACH OF THE UNDERDRAIN OUTLETS.

#### ITEM 207 - PERIMETER FILTER FABRIC FENCE

THE BOTTOM OF THE FENCE SHALL BE BURIED 6" BELOW THE GROUND. THE FENCE SHALL BE HIGH ENOUGH TO RETAIN SEDIMENT LADEN WATER AND ADEQUATELY SUPPORTED TO PREVENT COLLAPSE OR BURSTING. THE GROUND ELEVATION OF THE FENCE SHALL BE HELD CONSTANT EXCEPT THAT THE END ELEVATION SHALL BE RAISED TO PREVENT FLOW AROUND THE END OF THE FENCE.

THE FILTER FABRIC SHALL BE MAINTAINED TO BE FUNCTIONAL. THIS SHALL INCLUDE REMOVAL OF TRAPPED SEDIMENT AND REQUIRED CLEANING, REPAIR AND/OR REPLACEMENT OF THE FILTER FABRIC.

THE COST OF ALL MATERIALS. CONSTRUCTION, MAINTENANCE AND REMOVAL REQUIRED SHALL BE PAID FOR UNDER ITEM 207 - PERIMETER FILTER FABRIC FENCE.

# ITEM 607 - FENCE, TYPE 47, AS PER PLAN

CONTINGENCY QUANTITIES FOR FENCE REMOVAL AND REPLACEMENT HAVE BEEN INCLUDED PLANS FOR USE AS DIRECTED BY THE ENGINEER. CLEARING OF BRUSH NECESSARY FOR INSTALLATION SHALL BE INCIDENTAL TO THE COST PER FOOT OF FENCE.

ITEM 607 - FENCE, TYPE 47, AS PER PLAN 500 FT

#### ITEM 202 - PAVEMENT REMOVED, AS PER PLAN

REMOVAL OF EXISTING ASPHALT CURB SHALL BE CONSIDERED INCIDENTAL TO PAVEMENT



FILTER FABRIC SHALL MEET THE REQUIREMENTS OF ITEM 207.02.

∕∆	ADDENDUM N	10.1		DLF	1/14/15						
NO.		REVISIONS		BY	DATE						
	O INFRAS	HIO TURNE STRUCTURE	PIKE AN E COMI	ID MISSION	1						
R	OHIO TURNPIKE EASTBOUND AND WESTBOUND RIGHT TWO LANES & SHOULDER RECONSTRUCTION GENERAL NOTES										
	CT Consultants engineer: architects planners withoutgear wave courses										
DE	SIGNED: W.D.B.	CHECKED:	W.D.B.	DATE: AL	JG, 2014						
DR	AWN: M.Z.P.	IN CHARGE:	W.D.B.	SCALE: N	/A						
P	ROJECT 39-	-15-02A	SHEET	20 c	)F <b>419</b>						
# PAVEMENT

#### ITEM SPECIAL - SAW CUT JOINT (9" +/-)

THIS ITEM SHALL CONSIST OF SAW CUTTING WITH A DIAMOND BLADE AT JOINTS WHERE EXISTING ASPHALT AND PROPOSED ASPHALT MEET. THE LOCATION AND DEPTH SHALL BE AS SPECIFIED IN THE PLANS AND AS DIRECTED BY THE CHIEF ENGINEER. PAYMENT FOR THIS ITEM WILL BE AT UNIT BID PRICE PER LINEAR FOOT FOR ITEM SPECIAL - SAW CUT JOINT AND SHALL INCLUDE ALL LABOR, EQUIPMENT AND MATERIALS NECESSARY TO COMPLETE THIS ITEM.

ALL MAINTENANCE OF TRAFFIC NECESSARY TO COMPLETE THIS ITEM SHALL BE CONSIDERED INCIDENTAL TO ITEM SP 614 - MAINTAINING TRAFFIC.

## PAVEMENT REPAIRS

Ο

 $\bigcirc$ 

 $\bigcirc$ 

 $\cap$ 

THE FOLLOWING QUANTITIES, ARE INCLUDED AS A CONTINGENCY, TO BE USED AS DIRECTED BY THE CHIEF ENGINEER FOR PAVEMENT REPAIR MEASURES TO MAINTAIN TRAFFIC. MAINTENANCE OF TRAFFIC COSTS INCURRED BY THE CONTRACTOR FOR THESE CURRENTLY UNKNOWN AND UNDEFINED PAVEMENT REPAIRS WILL BE COMPENSATED ON A TIME AND MATERIALS BASIS AS APPROVED BY THE CHIEF ENGINEER. DEPTH FOR PARTIAL REMOVAL WILL BE 5" (+/-). REPLACEMENT MATERIALS ARE SPECIFIED IN 251.03 UNIT PRICES BID FOR THE ITEMS IMMEDIATELY BELOW SHALL NOT INCLUDE MAINTENANCE OF TRAFFIC COSTS.

ITEM 251 - PARTIAL DEPTH PAVEMENT REPA.	IR	<u>300 SY</u>
ITEM 255 - FULL DEPTH PAVEMENT REMOVAL	L AND RIGID REPLACEMENT	<u>400 SY</u>
ITEM 255 - FULL DEPTH PAVEMENT SAWING		<u>1,500 FT</u>

# ITEM SP 407 - TACK COAT, AS PER PLAN

#### ITEM SP 407 - TACK COAT FOR INTERMEDIATE COURSE, AS PER PLAN

DESCRIPTION: THIS WORK CONSISTS OF PREPARING AND TREATING A PAVED SURFACE WITH NTSS-IHM TRACKLESS TACK PRODUCED BY BLACKLIDGE EMULSIONS, INC., AE-NT NO TRACK TACK PRODUCED BY K-TECH SPECIALTY COATINGS, INC., OR APPROVED EQUAL BY THE CHIEF ENGINEER. THE PRODUCT SHALL MEET ALL REQUIREMENTS OF CONSTRUCTION AND MATERIAL SPECIFICATIONS ITEM 407 TACK COAT EXCEPT AS NOTED BELOW.

MATERIAL: CONFORM TO THE FOLLOWING TYPICAL PHYSICAL PROPERTIES:

<u>PARAMETER</u>	<u>TEST METHOD</u>	<u>MIN.</u>	MAX.
SAYBOLT FUROL VISCOSITY, SFS @ 25C	AASHTO T59	15	100
STORAGE STABILITY, 5 DAYS, %	AASHTO T59		5
RESIDUE BY DISTILLATION, %	AASHTO T59	50	
OIL DISTILLATE, %	AASHTO T59		1
SIEVE TEST, %	AASHTO T59		0.30
TEST ON RESIDUE:			
PENETRATION, @ 25C	AASHTO T49		25
SOFTENING POINT RANGE DEG C	AASHTO T53	65	
SOLUBILITY,%	AASHTO T44	97.5	

NOTE: PRODUCT SHOULD NOT CONTAIN FILLER SUCH AS CLAY, ETC. KEEP FROM FREEZING. SUPPLY CERTIFIED TEST DATA FROM AN INDEPENDENT LAB TO THE ENGINEER SHOWING THE MATERIAL SUPPLIED WAS TESTED FOR AND MEETS THE ABOVE PROPERTIES.

EQUIPMENT: ALL REQUIREMENTS OF 407.03 APPLY. SEE MANUFACTURER'S REPRESENTATIVE FOR CORRECT DISTRIBUTOR SETTINGS. THOROUGHLY CLEAN ALL EQUIPMENT IF CATIONIC EMULSION WAS PREVIOUSLY USFD

WEATHER LIMITATIONS: ALL REQUIREMENTS OF 407.04 APPLY.

PREPARATION OF SURFACE: ALL REQUIREMENTS OF 407.05 APPLY.

APPLICATION OF ASPHALT MATERIAL: UNIFORMLY APPLY THE ASPHALT MATERIAL WITH A DISTRIBUTOR PER THE REQUIREMENTS OF 407.06 EXCEPT AS NOTED. IF PRODUCT IS STORED FOR AN EXTENDED PERIOD OF TIME, PRIOR TO APPLICATION, AGITATE OR GENTLY CIRCULATE THE MATERIAL. ALL NOZZLES AND SPRAY PATTERNS SHALL BE IDENTICAL TO ONE ANOTHER ALONG THE DISTRIBUTOR SPRAY BAR. THE ANGLE OF THE NOZZLE SHOULD BE A 15 TO 30 DEGREE ANGLE TO THE SPRAY BAR AXIS TO MAXIMIZE OVERLAP OR AS RECOMMENDED BY THE NOZZLE MANUFACTURER. CONTACT THE MANUFACTURER'S REPRESENTATIVE FOR REQUIRED SPRAY NOZZLE SIZE, AND DISTRIBUTOR AND NOZZLE SETTINGS. APPLY AT A RATE OF 0.075 GALLONS PER SQUARE YARD TO ALL MILLED SURFACES AND BITUMINOUS AGGREGATE BASE, AND AT A RATE OF 0.06 GALLONS PER SQUARE YARD TO ALL INTERMEDIATE COURSE SURFACES AND BETWEEN COURSES OF ASPHALT. RECOMMENDED APPLICATION TEMPERATURE IS 160F TO 180F. DO NOT EXCEED 180F. ΤΠΙ ΠΤΙΟ IS NOT ALLOWED

THE ENGINEER AND MANUFACTURER'S REPRESENTATIVE WILL APPROVE RATE OF APPLICATION. TEMPERATURE, DISTRIBUTOR SETTINGS, AND AREAS TO BE TREATED BEFORE APPLICATION OF THE TACK COAT. THE ENGINEER WILL DETERMINE THE ACTUAL APPLICATION IN GALLONS PER SQUARE YARD BY A CHECK ON THE PROJECT. THE APPLICATION IS CONSIDERED SATISFACTORY WHEN THE MATERIAL IS APPLIED UNIFORMLY WITH NO VISIBLE EVIDENCE OF STREAKING OR RIDGING AND THE APPLICATION RATE IS ±10% OF THE SPECIFIED RATE.

METHOD OF MEASUREMENT: ALL REQUIREMENTS OF 407.07 APPLY.

BASIS OF PAYMENT: ALL REQUIREMENTS OF 407.08 APPLY.

# ITEM 302 -{BITUMINOUS AGGREGATE}BASE, PG 64-22 (2 EQUAL LIFTS)

THE CONTRACTOR SHALL BE REQUIRED TO CONSTRUCT THIS 302 ITEM IN TWO (2) EQUAL LIFTS. THE CONTRACTOR SHALL ALSO BE REQUIRED TO APPLY ITEM SP 407 - TACK COAT (FOR) A INTERMEDIATE COURSE) AS PER PLAN (APPLIED @(0.075) GAL./SQ.YD.) PRIOR TO CONSTRUCTING THE SECOND THET ∕∧



∕∕∖

# ITEM 252 - FULL DEPTH PAVEMENT SAWING

THE FOLLOWING ITEM HAS BEEN CARRIED TO THE GENERAL SUMMARY FOR USE BY THE ENGINEER TO MAKE TRANSVERSE SAW CUTS WHERE PROPOSED FULL DEPTH PAVEMENT WILL MEET EXISTING PAVEMENT AT THE PROJECT LIMITS. INTERCHANGE RAMPS AND EXISTING BRIDGES

THIS ITEM SHALL ALSO BE USED BY THE ENGINEER TO SAW CUT THE EXISTING MAINLINE PAVEMENT AS OUTLINED IN THE CONDITION NO. 1 ON SHEET 15 OF THE PLANS.

ITEM 252 - FULL DEPTH PAVEMENT SAWING

<u>15,000 FT</u>

TRAFFIC CONTROL

### ITEM 642 - PERMANENT PAVEMENT MARKINGS

PERMANENT PAVEMENT MARKING LOCATIONS SHALL BE DETERMINED BY REFERENCING THE BASE PAVEMENT JOINTS, AS SHOWN ON SHEET 15.

## ITEM SP621 - RAISED PAVEMENT MARKER

THIS ITEM SHALL BE INSTALLED IN ACCORDANCE WITH SP621 WITH THE SPACING PER STANDARD DRAWING RPM-1.

#### ITEM SP626 - BARRIER REFLECTORS

FOLLOWING COMPLETION OF THE PROJECT, NEW BARRIER REFLECTORS SHALL BE INSTALLED ON THE EXISTING MEDIAN WALL FROM THE BEGINNING OF THE PROJECT AT MILE POST (MP) 216.10 (STA. 528+85) TO MILE POST (MP) 218.50 (STA. 91+00). BARRIER REFLECTOR SPACING SHALL CONFORM TO SP 626. MATERIAL SPECIFICATIONS SHALL CONFORM TO SP 626

THE FOLLOWING QUANTITY HAS BEEN CARRIED TO THE TRAFFIC CONTROL GENERAL SUMMARY FOR USE AS DIRECTED BY THE CHIEF ENGINEER:

P 626 - BARRIER REFLECTOR,	TYPE B	_255_	EACH
----------------------------	--------	-------	------

## OTIC PERMANENT PAVEMENT MARKING OPERATIONS

THE CONTRACTOR WILL PERFORM ANNUAL PAVEMENT MARKING INSTALLATION FOR EACH OF THE TWO (2) CONSTRUCTION SEASONS OF THIS PROJECT. FOR PHASE 2 AND 2A PAVEMENT RECONSTRUCTION WORK. THE CONTRACTOR SHALL INSTALL NEW PAVEMENT MARKINGS FROM MP 216.10 TO MP 218.60 FOR THE WESTBOUND OUTSIDE EDGE LINE AND THE OUTSIDE LANE, AND SHALL INSTALL NEW PAVEMENT MARKINGS FOR THE WESTBOUND TWO LANE SECTION FROM MP 218.50 TO MP 221.26 PRIOR TO THE START OF THE FIRST CONSTRUCTION SEASON. THE CONTRACTOR SHALL INSTALL THE REMAINING LANE LINE AND YELLOW INSIDE EDGE LINE FOR THE WESTBOUND LANES AT THE END OF THE FIRST CONSTRUCTION SEASON. THE CONTRACTOR WILL ALSO INSTALL NEW PAVEMENT MARKINGS IN THE EASTBOUND DIRECTION FROM MP 216.10 TO MP 221.26 AT THE END OF THE FIRST CONSTRUCTION SEASON.

PRIOR TO THE START OF THE SECOND CONSTRUCTION SEASON, THE CONTRACTOR WILL PERFORM THE ANNUAL PAVEMENT MARKING INSTALLATION FROM MP 216.10 TO MP 218.60. FOR PHASE 3 AND 3A THE CONTRACTOR SHALL INSTALL NEW OUTSIDE EDGE LINE AND OUTSIDE LANE, IN THE EASTBOUND DIRECTION, AND SHALL INSTALL NEW PAVEMENT MARKINGS FOR THE EASTBOUND TWO LANE SECTION FROM MP. 218.50 TO MP 221.26 PRIOR TO THE START OF THE SECOND CONSTRUCTION SEASON. THE CONTRACTOR SHALL INSTALL THE REMAINING LANE LINE AND YELLOW INSIDE EDGE LINE FOR THE EASTBOUND LANES AT THE END OF THE SECOND CONSTRUCTION SEASON. THE CONTRACTOR WILL ALSO INSTALL NEW PAVEMENT MARKINGS IN THE WESTBOUND DIRECTION FROM MP 216.10 TO MP 221.26 AT THE END OF THE SECOND CONSTRUCTION SEASON.

ITEM 630 - SIGNING, MISC .: SIGN ERECTED, FLAT SHEET, EACH. ITEM 630 - SIGNING MISC .: SIGN ERECTED, EXTRUSHEET THIS ITEM SHALL BE AS OUTLINED IN ITEM 630 EXCEPT THAT ALL EXTRUSHEET SIGNS TO BE REPLACED AS A PART OF THE PROJECT WILL BE PROVIDED BY THE COMMISSION. THE CONTRACTOR SHALL CONTACT THE CHIEF ENGINEER TO ARRANGE FOR A PICK-UP OF THE EXTRUSHEET SIGNS TO BE ERECTED. ALL EXTRUSHEET SIGNS PROVIDED SHALL BE INSPECTED BY THE COMMISSION STAFF IN THE PRESENCE OF THE CONTRACTOR PRIOR TO LOADING OF THE PROVIDED MATERIALS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFE TRANSPORTATION OF THE MATERIALS PROVIDED TO THE JOB SITE. UPON ARRIVAL AT THE JOB SITE, THE TRANSPORTED SIGNING MATERIALS SHALL BE INSPECTED BY THE COMMISSION PERSONNEL TO ENSURE THAT NO DAMAGE OCCURRED DURING TRANSPORT. COSTS ASSOCIATED WITH THE PICK-UP OF THE SIGNS AND SUPPORTS, THE TRANSPORTATION TO THE PROJECT SITE AND ANY STORAGE COSTS UNTIL ERECTION SHALL BE CONSIDERED INCIDENTAL TO THE ITEM NECESSITATING THE WORK.

IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE EXISTING CLEARANCE BETWEEN THE LANES OF THE OHIO TURNPIKE AND THE BOTTOM OF EXISTING SIGNS. ALL NEW SIGNS SHALL BE INSTALLED SUCH THAT A MINIMUM VERTICAL CLEARANCE IS PROVIDED ONCE THE SIGN IS INSTALLED AS SHOWN ON ODOT STANDARD CONSTRUCTION DRAWINGS. THE CONTRACTOR MAY HAVE TO ADJUST SPACING OF 2-BARS BASED ON WIDTH OF NEW SIGNS. GROUND MOUNTED SIGNS SHALL BE INSTALLED AT THE SAME HEIGHT AS EXISTING SIGNS.

THE CONTRACTOR SHALL PROVIDE MOUNTING CLIPS PER 2013 ODOT CONSTRUCTION AND MATERIAL SPECIFICATION ITEM 630, ODOT SUPPLEMENTAL SPECIFICATION 800 (07/19/2013), AND ODOT SUPPLEMENTAL SPECIFICATION 992 (04/18/2014).

THIS ITEM SHALL INCLUDE ALL LABOR AND MATERIAL COSTS NECESSARY TO INSTALL THE SIGNS AS SHOWN IN THE PLANS, AND SHALL INCLUDE BUT NOT BE LIMITED TO ALL LABOR, TEMPORARY TRAFFIC CONTROL, SIGN BACKING ASSEMBLIES, AND HARDWARE NECESSARY TO INSTALL THE SIGNS TO THE NEW OR EXISTING STRUCTURAL BEAM SUPPORTS.

ALL COSTS ASSOCIATED WITH THIS ITEM SHALL BE INCLUDED IN THE UNIT BID PRICE FOR ITEM 630 - SIGNING, MISC .: SIGN ERECTED, OVERHEAD EXTRUSHEET, EACH.

# ITEM 631 - REMOVAL MISC.: SIGN LIGHTING AND SIGN SERVICE

TWO WEEKS PRIOR TO REMOVAL OF THE EXISTING SIGN THE CONTRACTOR SHALL CONTACT MIKE BERGSTROM AT 440-821-3368 OR michael.bergstrom@ohioturnpike.org. COMMISSION PERSONNEL WILL REMOVE THE DISCONNECT AND SIGN SERVICE. THEY WILL ALSO REMOVE ANY REMOTE BALLAST AND THEIR HOUSING.

ALL EQUIPMENT, MATERIALS, AND LABOR REQUIRED TO PERFORM THE WORK OUTLINED ABOVE SHALL BE INCLUDED IN THE UNIT BID PRICE OF EACH FOR ITEM 630-REMOVAL MISC .: SIGN LIGHTING AND SIGN SERVICE.

nician: frey

∕∆

# ITEM 630 - SIGNING, MISC .: SIGN ERECTED, FLAT SHEET

THIS ITEM SHALL BE AS OUTLINED IN 630 EXCEPT THAT ALL SIGNS AND SUPPORTS TO BE INSTALLED SHALL BE PROVIDED BY THE COMMISSION, THE CONTRACTOR SHALL CONTACT THE CHIEF ENGINEER TO ARRANGE FOR PICKUP OF THE SIGN AND POST MATERIALS FOR THE PROJECT. ALL SIGNS SHALL BE INSPECTED BY THE COMMISSION STAFF IN THE PRESENCE OF THE CONTRACTOR PRIOR TO LOADING OF PROVIDED MATERIALS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFE TRANSPORTATION OF THE MATERIALS PROVIDED TO THE JOB SITE. UPON ARRIVAL AT THE JOB SITE, THE TRANSPORTED SIGNING MATERIALS SHALL BE INSPECTED BY THE COMMISSION PERSONNEL TO ENSURE THAT NO DAMAGE OCCURRED DURING TRANSPORT. COSTS ASSOCIATED WITH THE PICK-UP OF THE SIGNS AND SUPPORTS, THE TRANSPORTATION TO THE PROJECT SITE AND ANY STORAGE COSTS UNTIL ERECTION SHALL BE CONSIDERED INCIDENTAL TO THE ITEM NECESSITATING THE WORK. THIS ITEM SHALL INCLUDE ALL LABOR AND MATERIAL COSTS NECESSARY TO INSTALL THE SIGNS AS SHOWN IN THE PLANS.

ALL COSTS ASSOCIATED WITH THIS ITEM SHALL BE INCLUDED IN THE UNIT BID PRICE FOR

THE CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL SIGN LIGHTING COMPONENTS FROM THE LUMINAIRES DOWN TO THE DISCONNECT SWITCH (INCLUDING THE DISCONNECT SWITCH). ITEMS REMOVED AND DISPOSED OF SHOULD INCLUDE BUT NOT BE LIMITED TO LUMINAIRES AND SUPPORT ARMS, STRUCTURAL STEEL TUBE, AND SIGN WIRING.

∕∆	ADDEI	NDUM N	10.1		DLF	1/14/15									
NO.			REVISIONS		BY	DATE									
		O	HIO TURNA	PIKË AI E CON	ND IMISSIOI	N									
R	OHIO TURNPIKE EASTBOUND AND WESTBOUND RIGHT TWO LANES & SHOULDER RECONSTRUCTION GENERAL NOTES														
		(	engineers arci stag Sering Caur Menue, 149 521.5900 Times coores	nsulta hitects plan	ants										
DE	SIGNED:	W.D.B.	CHECKED:	W.D.B.	DATE: A	UG, 2014									
DR	AWN:	M.Z.P.	IN CHARGE:	W.D.B.	SCALE: N	I/A									
PF	ROJEC	CT 39-	-15–02A	SHEET	22 (	of <b>419</b>									

								сц		DED												
- 10	40		04			044	047				000	004	000	004	0.05	070			ITEM	GRAND	UNIT	
18	19	20	21	22		211	213	214	216	219	220	221	222	224	225	2/9	<u>PIS-1</u>					
LUMP																	1		201	1 '	LUMP	CLEARING AND GRUE
50																			201	50	EACH	TREE REMOVED, 18"
5																			201	5	FACH	TREE REMOVED 30"
																			201			INCE NEMOTED, 00
							2 462												202	2 462		
					_		2,402												202	2,402	FI	PIPE REMOVED
							53												202	53	EACH	CATCH BASIN OR INI
							1										1		202	1 '	EACH	MANHOLE REMOVED
		500																	202	500	FT	FENCE REMOVED
						27 794													202	27 794	FT	GUARDRAIL REMOVED
						2,,, 0,													202			
						1 224													000	1 224		
						1,224													202	1,224	ST	APPROACH SLAB REI
						760													202	760	FT F	CONCRETE BARRIER
						330											1		202	330	FT	GUTTER REMOVED
										241.596									202	241.596	.SY	PAVEMENT REMOVED.
						-			<del>ب</del> ا	26 748	8	54 389					20		203 5	81 157		EXCAVATION
	4 000								- 1	لىتىنى <u>نى</u>	₽	24 281					20		203	hundinging		
	4,000	10.050			_	_						24,201							203	20,201		EACAVATION, AS FER
<u> </u>		10,000			_													<u> </u>	million		handilina	RUCK EXCAVATION
<u> </u>	1,650	3																{	203	1,650	CY	ROCK EXCAVATION F
		ſ	500									1,038					1		203	J1,538	L. CA	EXCAVATION FOR SLO
																	5.641		203	5,641	CY	EXCAVATION INCLUDI
																	,			,		
	4 000	1	300	1	1	1	L	1				31 388			1	1			203	35 688		FMBANKMENT
1	L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 950	1 300	+	1	1	1	1			1	+		1	1	1	1 1		203	18 950		
		10,000						+							l				203	10,000		LINDAINT MEINI, AS PE
																	10		203	10	CY	GRANULAR EMBANKM
																	20		203	20	I CY I	GRANULAR MATERIAL,
																	2.821		203	2.821	CY	BORROW
																						Bernien
		170				-													204	179		
		1/0			_			-				-							204	1/0		
																	80		204	80	Sĭ	GEOTEXTILE FABRIC,
		267																	204	267	SY SY	GEOTEXTILE FABRIC,
		267								1,232							1		204	1,499	SY	SUBGRADE COMPACT
	· ·																					
	<u>⊦</u> {	175,700	1																206 \$	175,700	3 SY	LIME STABILIZED SUF
	<u> </u>	5 090																	206	5 090	B TON	
	<b>├</b>	76 140	B																	76 140		
	└───¥	176,140	₿																206	/0,140	1 <u>51</u>	CEMENT STABILIZED
	└───¥	1,590	<u>}</u>																206	1,590	I ION	CEMENI
	}	15,110	B														1		206 {	15,110	SAL	CURING COAT
		1	1																206	130	HOUR	TEST ROLLING
		5 000				9 546													200	14 546	FT	
		0,000			-	1 406														1 406		
					_	1,490		-				-							SPECIAL	1,490	51	CHANNEL CLEANOUT
						200													SPECIAL	200		CONCRETE CHANNEL
		178																	SP304	178	CY CY	GRANULAR MATERIAL
																	1			1		
								1.220											SP526	1.220	SY	CLASS C CONCRETE.
		1		1		1		808			1	1			1	120	1 1		SP536	937	SY	CONCRETE WEATHER
		1	1	1	-	1	1	+			1	1			1	123					<u>⊢ ''</u>	
		+	1		1	+		26 225			1	+			+	-			600	26.005		
I		I		-				20,223							I				606	20,220		GUARDRAIL, TIPE MC
			ļ		_			26				1							606	26	LACH	ANCHOR ASSEMBLY,
								28											606	28	EACH	ANCHOR ASSEMBLY,
								26											606	26	EACH	MGS BRIDGE TERMIN
			1	1		1		9				1					1 1		606	9	FACH	MGS BRIDGE TERMIN
				1			1	+ <u> </u>								1						
H		1	ł	+	+	+	t	75			1	1		l	1	1			606	75		
						+		+ <u>'</u>											000	/3		BUANDINAL, DARRIER
				1				2											606	2	Fľ	IMPACT ATTENUATOR,
								25											606	25		GUARDRAIL REBUILT
																	1					
		500		1							1					1			607	500		FENCE, TYPE 47, AS
		1		1		1	t	3 796				1			1	1	1 1		600	3 706		ASPHALT CONCRETE
H		l	l			+		0,730				+			l	+			600	044		CLIPB TVDE 4 C
						+		L 744											609	<u></u>		COND, TIPE 4-C
		-				-		+ .=-				-			-					L		
								438											622	438		CONCRETE BARRIER,
								240								100			622	340	FT	CONCRETE BARRIER,
								80									1		622	80	FT	CONCRETE BARRIER.
		1	1	1				1 22							1	152	1		622	152	FT	PORTABLE CONCRETE
		1		+	-	1		1				1			1	102				1.02		CITIE CONTONELL
I		l				+		717						l	l	-			SPEAG	717	EAOU	
		l	l			+									l	<u> </u>	<b>↓</b>		57020			DARRIER REFLECTOR
				255				22								4			5P626	281	LACH	BARRIER REFLECTOR
		267																	861	267	<u>SY</u>	GEOGRID FOR SUBG
																	1 2 500		I SPECIAL	2 500		LIMESTONE SAND



DESCRIPTION	REF. NO.
ROADWAY BING	18
SIZE SIZE	
LET REMOVED	
	10
, AS PER PLAN	19
MOVED REMOVED	
AS PER PLAN	20
	19
OR UNDERDRAIN INSTALLATION, AS PER PLAN	19
IPE EROSION PROTECTION IG EMBANKMENT, AS PER PLAN	PIS-1
R PLAN ENT AS PER PLAN (NO 8 ACCREGATE)	19, 20 PIS_1
TYPE C	115-1
712.09 TYPE A	
712.09 TYPE D	
$\Delta$	10 20
SUDODADE 12 INCHES DEED AS DED DIAN	10, 20
SUBGRADE, 12 INCHES DEEP, AS PER PLAN	19, 20
CLEANOUT	20 20
APPROACH SLAB, USING TYPE I CEMENT (T=12")	10
RUOFING, BARRIERS AND PARAPEIS	19
MGS TYPE T, USING LONG STEEL POSTS	
MGS TYPE E, USING LONG STEEL POSTS, AS PER PLAN AL ASSEMBLY, TYPE 1, USING LONG STEEL POSTS	20
AL ASSEMBLY, TYPE 2	
DESIGN, TYPE MGS	40
TTPE T, (BIDIRECTIONAL), AS PER PLAN	19
PER PLAN	20
CURB, TYPE 1, PG64-22	
SINGLE SLOPE TYPE D. AS PER PLAN	18
TYPE B-50, AS PER PLAN	18
BARRIER, 32", AS PER PLAN	23
TYPE A	
TYPE B RADE STABILIZATION, AS PER PLAN, TENSAR TRIAX 160 GEOGRID	19, 20
ADDENDUM NO. 1 DLF	1/14/15
NO. REVISIONS BY	DATE
OHIO TURNPIKE AND	
OHIO TURNPIKE EASTBOUND AND WESTB	OUND
RIGHT TWO LANES & SHOULDER RECONSTR GENERAL SUMMARY	COUTION
	01 2014
DRAWN: DLF IN CHARGE: WDB SCALE: N	
PRUJECT 39-15-02A SHEET 2070	ル 419

								SH	EET NUM	BER									ITCM	GRAND	LINUT	
18	19	20	21	22		211	213	214	216	219	220	221	222	224	225	279	PIS-1			TOTAL		
									80,404										SP605	80,404	FT	6" BASE PIPE UNDEF
									46,950										SP605	46,950	FT	6" SHALLOW PIPE UN
									48,208										SP605	48,208	FT	6" SHALLOW PIPE UN
							506												837	506		24" LINER PIPE, AS
-							195												837	195	FT	30" LINER PIPE, AS
							163												837	163	FT_	60" LINER PIPE, AS
							122												837	122	CY	BACKFILL FOR LINER
							10												CDEOIAL	10	FAOL	10" DDEOLOT OONOD
							10													10		12 PRECAST CONCR
-						-	1		-										SPECIAL	1		10 PRECAST CONCR
							-															42 FRECAST CONCI
							1.334												SPECIAL	1.334	FT	PIPE CLEANOUT
							.,												01 200 12	,,		
L			L		L			L			L						L					
l				700															054	700		
				300															251	500	A ^{SY}	PARTIAL DEPTH PAVE
			<del>ب (</del>	15 000	<u>B</u>	+	+									-		+	252 \$	15 000	<u>}_</u>	
					₽														202 8	h	₽ ''	
										6,408									254	6,408	SY	PAVEMENT PLANING.
										7.297									254	7.297	SY	PAVEMENT PLANING.
										.,						1.756			254	1.756	SY	PAVEMENT PLANING
																.,,			201	1,,, 00		
				400															255	400	SY	FULL DEPTH PAVEME
				1,500															255	1,500	FT	FULL DEPTH PAVEME
										18,219									SP302	18,219	CY	ASPHALT CONCRETE
										51,388									SP302	51,388	CY	ASPHALT CONCRETE
										20,808									SP304	20,808	CY	AGGREGATE BASE (SI
										28,217									SP304	28,217	CY	AGGREGATE BASE
-																						
										4,159									SP402	4,159	CY	ASPHALT CONC. BASI
										8,594									SP402	8,594	CY	ASPHALT CONC. BASE
						_				7 5 6 6									05404	7.040		
										3,300						/4			SP404	3,640		ASPHALT CONCRETE
										7,309						1 5 2 0			SP404	7,309		ASPHALI CONCRETE
										52,405						1,520			SP404A	53,965		JUINT SEALER
										15 687						106			SP407	15 793	GAL	TACK COAT FOR INTE
										32,107						100			SP407	32,107		TACK COAT AS PER
										02,107									31 107	02,107	0/12	
											29,079								617	29,079	SY	SHOULDER PREPARAT
											1,491								617	1,491	CY	COMPACTED AGGREGA
											2,047								SP627	2,047	TON	STONE SHOULDER PF
										40.55										40.00	<u>-</u>	
					L			L		16.09	L						L		SPECIAL	16.09	MILE	SUNIC NAP ALERT PA
										24,419						1,520			SPECIAL	25,939		SAW CUT JOINT (9"
						+																
			<u> </u>				+				<u> </u>					+	<u> </u>	+				
				-		+	+											+	+		<u> </u>	
		1		1		1	1	<u> </u>									<u> </u>	+	1		1	
																			1	1	1	
		1		1		1			1		1							1	1		1	
									1													



DESCRIPTION		REF. NO.
DRAINAGE (CONTINUE	ED)	
DRAIN, WITH FABRIC WRAP (18")		
DERDRAIN, WITH FABRIC WRAP (24	4") ~~)	
DERDRAIN, WITH FADRIC WRAF (SC		
PER PLAN PER PLAN		370
PER PLAN		370
TE END SECTION TE END SECTION		21
TE END SECTION		21
		370
DAVEMENT		
PAVEMENT		
IENT REPAIR		
IT SAWING		
SPHALT CONCRETE (3-1/4")		
SPHALT CONCRETE (9")	тн)	
IT REMOVAL AND RIGID REPLACEMI IT SAWING	ENT, CLASS C	
BASE, PG64-22 (SHOULDER) BASE, PG64-22		
OULDER)		
COURSE OR RECYCLED ASPHALT	CONC. BASE COURSE, PG64-22 BASE COURSE, PG70-22 (FR)	
SURFACE COURSE, USING CRUSHEI	D STONE, PG64-22	
SURFACE COURSE, USING CRUSHEI	D SLAG, PG70-22 (FR)	
RMEDIATE COURSE, AS PER PLAN		22
PLAN		22
ON, AS PER PLAN		20
OTECTION		
TTERN (SNAP)		
L)		
	ADDENDUM NO. 1	LF 1/14/15
<u> </u>	OHIO TURNPIKE AND	
-		
	RIGHT TWO LANES & SHOULDER RECONS GENERAL SUMMARY	STRUCTION
F	CT Consultants engineers   architects  planners	
l F		NOV. 2014
	RAWN: DLF IN CHARGE: WDB SCALE:	NONE
	7KUJECI 39-15-02A SHEET 20	9 OF 419

_	_	_	_	76
снескер ву:	DATE:	Revised BY:	DATE:	ADWAY-SUBSUMMARIES.DWC
DESIGNED BY: WDB	DATE: 11/2014	DRAWN BY: DLF	DATE: 11/2014	CAD FILE NAME:14138-RO

									202	203	204	SPECIA	L 254	254		SF	302			SF	² 304		SP	402	SP	404	SP404A	SP4	07	SPECIAL	í — —
STATION T	o station	SIDE	LENGTH	PAVEMENT WIDTH (AVG.)	SHOULDER WIDTH	SURFACE AREA	APPROACH SLAB AREA	AREA BY COMPUTER	PAVEMENT REMOVED, AS PER PLAN	EXCAVATION (T=6-3/4"+/- MAINLINE PAVT. T=15-334"+/-3 SHOULDERS T=14"+/- APPROACH SLABS)	SUBGRADE COMPACTION	SAW CUT JOINT (9" +/-)	PAVEMENT PLANING, ASPHALT CONCRETE (3-1/4")	PAVEMENT PLANING, ASPHALT CONCRETE (9")	8" ASPHALT CONCRETE BASE, PG 64-22 (SHOULDER)	10-1/2"** ASPHALT CONCRETE BASE, PG 64-22	11-1/2" ASPHALT CONCRETE BASE, PG 64-22	5-3/4" ASPHALT CONCRETE BASE, PG64-22	8-1/2" AGGREGATE BASE (SHOULDER)	9-1/2" AGGREGATE BASE (SHOULDER)	6" AGGREGATE BASE	12" AGGREGATE BASE	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG44-22	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG70-22 (FR)	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG64-22	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG70-22 (FR)	JOINT SEALER	TACK COAT FOR INTERMEDIATE COURSE, AS PER PLAN (0.06 GAL-/S.Y.)	TACK COAT, AS PER PLAN (0.075 GAL/S.Y.)	SONIC NAP ALERT PATTERN (SNAP)	
	0					SF DER	SF	SF	SY	CY	SY	FT	SY	SY	CY	CY	CY	CY	CY	CY	CY	CY	CY	CY	CY	CY	FT	GAL.	GAL.	MILE	
500 - 05 0											<u>م</u>						0700							770		740		450			
528+85.0 528+85.0	555+05.9 555+05.9		2620.9	25.00	9.00	23588			2913	1438	}	2621		365	594		2326	59		731	1214		128	3/2	110	319	2621	459 158	1120	0.50	
555+05.9 555+05.9	562+96.8 562+96.8		790.9	42.29	7.00	5537		33445	3629	719 285	}	791		110	140		1188	18		174	620		30	186	26	160	791	230 37	566 47	0.15	1
562+96.8	564+18.1	LT	121.3	25.00	9.00	3032			324	67 56	}	122		17	28		108	3		34	57		6	18	6	15	122	22	52	0.03	1
00+00.0	27+23.1		2723.1	25.00	9.00	68077			7262	1494	1	2724		379	20		2417	61		750	1261			387	0	331	2724	477	1163	0.05	
27+23.1	27+23.1 27+42.2		19.2		9.00	24508	1145		3026 <b>č</b>	1243	<b>)</b> 128				617					/59		43	133		114			164	205	0.52	
29+54.6 29+73.8	29+73.8 33+11.9		19.2 338.1	25.00		8452	1150		902 8	<u>50</u> 186	128	339		47			300	8			157	43		48		42	339	60	145		
29+73.8 33+11.9	33+11.9 33+27.2	LT	338.1		9.00	3043	914		376 {	155	<u>}</u> 102				77					95		35	17		15			21	26	0.07	
34+67.2	34+82.5		15.3	05.00		40504	915		54705	40	102	1044		070			1707				000	35		070		070	1011	740			
34+82.5 34+82.5	54+23.4 54+23.4		1940.9	25.00	9.00	48524			2157	886	{	1941		270	440		1/23	44		541	899		95	276	81	236	1941	340 117	829	0.37	
54+23.4 54+23.4	<u>62+63.4</u> 62+63.4		840.0 840.0	31.00	9.00	26040 7560			2800	566 384	{	840		117	191		925	19		234	483		41	147	35	126	840	181 51	443 63	0.16	
62+63.4 62+63.4	82+09.4 82+09.4	LT	1946.0 1946.0	37.00	9.00	72002			7784	1555 888	}	1946		271	441		2556	44		543	1334		95	403	82	345	1946	497 117	1221	0.37	
82+09.4	83+60.0		150.6	38.50	0.00	5799			628	125	}	151		21	75		206	4		40	108			33		28	151	40	99	0.07	
82+09.4 83+60.0	90+93.7		733.7	47.35	9.00	34743			3779	745	}	734		102			1234	17		42	644		0	193		166	734	238	587	0.05	
83+60.0	90+93.7		733.7		9.00	6604			816 2	335	}				167					205			36		31			45	56	0.14	
	Т	WO LANES	S AND INSI	de/outsie I	DE SHOULD	DER I		1			Ш																		'		
90+93.7	92+00.0	LT	106.3	57.51	18.00	6112			656					15	40	199			57		114		11	34	0	29	107	42	103	0.05	
90+93.7 92+00.0	92+00.0	LI	359.4	60.41	18.00	21711			2333					50	49	704			55		403			120	9	103	360	148	366	0.05	
92+00.0 95+59.4	<u>95+59.4</u> 111+08.3		<u>359.4</u> 1548.9	26.00	18.00	6470 40273			719 4131					216	163	1306			180		746		35	228	30	196	1549	44 282	54 688	0.14	
95+59.4 111+08.3	111+08.3 116+97.3		1548.9 589.0	48.85	18.00	27881			3098 3066					82	702	933			773		533		151	160	130	1.37	589	186 197	233 486	0.59	
111+08.3	116+97.3		589.0	38.00	16.00	9424			1178					79	238	330			263		100		51	59	44	40	270	63	79	0.23	1
120+55.8	123+25.0		269.2	70.00	16.00	4308			539						109	101			121		130		24		20	+3	270	29	36	0.11	
123+25.0 123+25.0	124+25.0		100.0	32.00	17.00	1700			260					14	43	104			48		60		10	18	8	16	100	12	15	0.04	1
<u>124+25.0</u> 124+25.0	<u>131+75.0</u> 131+75.0		750.0	26.00	18.00	19500			2000					105	340	632			374		362		73	111	63	95	750	137 90	<u>333</u> 113	0.29	
131+75.0 131+75.0	158+66.6 158+66.6	LT	2691.6	26.00	18.00	69983 48450			7178					374	1219	2268			1342		1296		262	397	225	340	2692	489	1195	1.02	
158+66.6	158+84.1		17.5		10.00	+0+30	694				78				1213				1012			26	202		225			525		1.02	
161+13.9	237+19.0		7605.1	26.00		197732	090		20281		/0			1057		6408					3662	20		1120		960	7606	1382	3375		
161+13.9	237+19.0	LI	7605.1		18.00	136892			15211						3443				3791				/40		634			913	1141	2.89	
																													'		
																													[]		
															1					1									'		
		TOTA	LS CARRIE	i D to shei	L ET 219				122823	13635	616	12209	0	3650	9036	12886	12983	277	6945	3358	14143	208	1946	4309	1670	3693	26232	7716	15999	7.70	
																											DDENDUN	<u> NO. 1</u>		DLF	F 1/14/1
																										NO. OF RIGH	INFRA HIO TURN IT TWO L	REVISIO STRUCT PIKE EAST ANES & S PAVEMENT	IS INPIKE URE CO BOUND A HOULDER SUBSUMI Consul architect p architect p architect p architect p	AND DMMISS ND WESTI RECONST WARY tants	DATE SION BOUND IRUCTION
																										DESIGN	IED: WDB	CHECKE	D: JMP RGE: WDP	DATE: SCALE:	NOV., 201 NONE
																										PRO	JECT	39–15–0	2A SHE	т 217	/ OF 419

									202	203	204	SPECIAL	. 254	254		SP	302			SP3	304		SP	402	SP	404	SP404A	SP	407	SPECIAL	
STATION T	o station	SIDE	LENGTH	PAVEMENT WIDTH	SHOULDER MIDTH	SURFACE AREA	APPROACH SLAB AREA	AREA BY COMPUTER	PAVEMENT REMOVED, AS PER PLAN	EXCAVATION (T=6-3/4"+/- MAINLINE PAV. (T=15-3/4"+/-) SHOULDERS T=14"+/- APPROACH SLABS)	SUBGRADE COMPACTION	SAW CUT JOINT (9" +/-)	PAVEMENT PLANING, ASPHALT CONCRETE (3-1/4")	PAVEMENT PLANING, ASPHALT CONCRETE (9")	8" ASPHALT CONCRETE BASE, PG 64-22 (SHOULDER)	10-1/2"" ASPHALT CONCRETE BASE, PG 64-22	11-1/2"" ASPHALT CONCRETE BASE, PG 64-22	5-3/4" ASPHALT CONCRETE BASE, PG64-22	8-1/2" AGGREGATE BASE (SHOULDER)	9-1/2" AGGREGATE BASE (SHOULDER)	6" AGGREGATE BASE	12" AGGREGATE BASE	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG64-22	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG70-22 (FR)	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG64-22	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG70-22 (FR)	JOINT SEALER	TACK COAT FOR INTERMEDIATE COURSE, AS PER PLAN (0.06 GAL./S.Y.)	TACK COAT, AS PER PLAN (0.075 GAL/S.Y.)	SONIC NAP ALERT PATTERN (SNAP)	
			FT	FT	FT	SF	SF	SF	SY	CŸ	SY	FT	SY	SY	CY			CY	CY		CY	CY	CY	CY	CY	CY	न	GAL.	GAL.	MILE	l
	OUTS	DE TW	O LANES	AND OUTS	IDE SHOUL	DER		1																							l
528+85.0	553+81.6	RT	2496.6	25.00		62415			6658	1370	₿	2497		347			2216	56			1156		400	354	4.05	304	2497	437	1067		l
528+85.0 553+81.6	553+81.6 564+18.1	RT	1036.5	48.52	9.00	22470		50295	5474	1077	ł	1037		144	000		1786	24		696	932		122	279	105	239	1037	344	850	0.48	l
553+81.6 00+00.0	564+18.1 06+61.5	RT	1036.5 661.5	31.62	7.00	7256		20914	922 2251	373 455		662		92	184		743	15		228	388		40	118	34	101	662	49	61 356	0.20	
00+00.0 06+61.5	06+61.5 27+86.5	RT RT	661.5 2125.0	25.00	7.00	4631 53125			588 5667	238 1166	}	2125		296	118		1886	48		146	984		26	302	22	259	2125	31	<u>39</u> 908	0.13	l
06+61.5 27+86.5	27+86.5 28+05.7	RT RT	2125.0		9.00	19125	1146		2362	970	128				481					592		43	104		89			128	160	0.41	l
30+18.0 30+37.2	30+37.2	RT	19.2	25.00		7255	1145		774	49	128	201		41			258	7			1 3 5	43		12		36	201	51	124		l
30+37.2	33+27.4	RT	290.2	25.00	9.00	2612	010		323	133		291		41	66		200	/		81	155	74	15	42	13		291	18	22	0.06	l
33+27.4 34+82.5	<u>33+42./</u> <u>34+97.7</u>	RT	15.3 15.3				912 911			<u> </u>	102											34 34									l
34+97.7 34+97.7	70+97.7 70+97.7	RT RT	3600.0 3600.0	25.00	9.00	89999 32400			9600	1975 1643		3600		500	815		3195	80		1003	1667		175	511	150	438	3600	630 216	15 <u>38</u> 270	0.69	l
70+97.7 70+97.7	82+53.7 82+53.7	RT RT	1156.0	39.82	9.00	10405		46034	4987 1285	992 528	1	1157		161	262		1634	26		323	853		57	257	49	220	1157	317	780 87	0.22	l
82+53.7 82+53.7	83+60.0 83+60.0	RT RT	106.3	13.00	9.00	1382 957			284 119	32 49	}	107		15	25		50	3		30	26		6	9	5	8	107	11	25	0.03	l
83+60.0 83+60.0	90+93.7 90+93.7	RT	733.7	18.24	9.00	13384			1957	300	}	734		102	167		476	17		205	248		36	78	31	67	734	96	231	0.14	l
00100.0	TWO										ľΔ_				107					200										0.17	l
00+077									004					45										10		14	107	00			
90+93.7 90+93.7	92+00.0	RT	106.3	26.00	18.00	1913			284					15	49	90			53		52		11	16	9	14	107	13	48	0.05	l
92+00.0 92+00.0	97+30.3 97+30.3	RT RT	530.3 530.3	26.00	18.00	13788 9546			1415					74	241	447			265		256		52	79	45	67	531	97 64	236 80	0.21	l
97+30.3 97+30.3	<u>113+98.6</u> 113+98.6	RT RT	1668.3 1668.3	42.80	16.00	71405 26693			7564 2966					232	673	2315			745		1323		145	397	124	341	1669	490 178	1208 223	0.64	l
113+98.6 113+98.6	116+59.5 116+59.5	RT RT	261.0 261.0	26.00	18.00	6786 4698			696 290					37	119	220			131		126		26	39	22	33	261	48	<u>116</u> 40	0.10	l
120+19.4 120+19.4	158+17.8 158+17.8	RT RT	3798.4 3798.4	26.00	18.00	98759 68372			10130 7597					528	1720	3201			1894		1829		370	560	317	480	3799	691 456	1686 570	1.44	l
158+17.8 160+48.4	158+35.3 160+65.9	RT	17.5				695 695				78 78											26 26									l
160+65.9	237+19.0	RT	7653.1	26.00	18.00	198982			20409					1063	3465	6449			3815		3685		745	1127	638	966	7654	1391	3397	2 90	
																															l
																															l
																															l
																															l
		TOTA	LS CARRIE	d to she	ET 219	•		•	118773	13113	<u>}616</u> ▲	12210	0	3647	8951	12722	12244	276	6903	3304	13660	206	1930	4168	1653	3573	26231	7516	15538	7.70	<u> </u>
											<i>4</i> 2																LINDUM	NU. 1			
																										NO.	0		<b>RNPIKE</b>		
																										OHIC	<b>NFRAS</b> D TURNPI	IHUCT IKE EAST	BOUND A	ommis: .nd west	BOUND
																										RIGHT	TWO LAI	NES & S <u>AVE</u> MENT	HOULDER SUBSUM	RECONS	RUCTION
																											C		Consul	tants	
																										DESIGNE	<u>): WDB</u>	CHECKE	me Menuer, Ohio 44000 ener consultante corr	DATE:	NOV., 2014
																											DLF FCT 39	<u>  IN CHA</u> 9—15—0	RGE: WOB	SCALE: ET 218	NONE
																										1					



									202	203	204	SPECIAL	254	254		SP	302			SP3	04		SP	402	S	P404	SP4044	SP4	107	SPECIAL
		SIDE	1 LENGTH	PAVEMENT WIDTH	t Shoulder width	SURFACE AREA	APPROACH SLAB AREA	REA BY COMPUTER	PAVEMENT REMOVED, AS PER PLAN	EXCAVATION (T=6-3/4*+/- MAINLINE T=15-3/4*+/-3 SHOULDERS T=14*+/- APPROACH	SUBGRADE COMPACTION	t saw cut Joint (9" +/-)	PAVEMENT PLANING, ASPHALT CONCRETE (3-1/4")	PAVEMENT PLANING, ASPHALT CONCRETE (9")	8" ASPHALT CONCRETE BASE, PG 64-22 (SHOULDER)	10-1/2"" ASPHALT CONCRETE BASE, PG 64-22	11-1/2"" ASPHALT CONCRETE BASE, PG 64-22	5-3/4" ASPHALT CONCRETE BASE, PG64-22	8-1/2" AGGREGATE BASE (SHOULDER)	9-1/2" AGGREGATE BASE (SHOULDER)	6" AGGREGATE BASE	2" AGGREGATE BASE	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG64-27	1-3/4" ASPHALT CONCRETE BASE COURSE OR RECYCLED ASPHALT CONCRETE BASE COURSE, PG70-22 (FR)	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG64-22	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG70-22 (FR)	I JOINT SEALER	TACK COAT FOR INTERMEDIATE COURSE, AS PER PLAN (0.06 GAL/S.Y.)	TACK COAT, AS PER PLAN (0.075 GAL./S.Y.)	SONIC NAP ALERT PATTERN (SNAP)
				FI		SF	55	51	St	Cr	Sr		ST	ST	CT			CT			CT	CT	CT		Cr		FI	GAL.	GAL.	
	THIRD	LANE AN	ND INSIDE	SHOULDE	<u>r resurf</u>																									
26+64.0 26+64.0 29+93.1 34+87.2 34+87.2 83+60.0 83+60.0	27+42.2 27+42.2 33+16.7 35+60.0 35+60.0 90+93.7 90+93.7		78.2 78.2 323.6 323.6 72.8 72.8 733.7 733.7	10.75 10.75 10.75 5.50	13.25 13.25 13.25 13.25 18.50			797 1105 3513 4234 792 945 4051 13559					89 123 391 471 88 105 451 1507										6 23 6 74	5 22 5 27	6 20 5 63	5 19 5 24		5 7 23 28 5 6 27 90	7 9 29 35 7 8 34 113	0.02 0.07 0.02 0.14
26+86.0 26+86.0 30+18.2 30+18.2 34+93.3 34+93.3 83+60.0 83+60.0	27+67.4 27+67.4 33+22.9 35+65.0 35+65.0 90+93.7 90+93.7	RT RT RT RT RT RT RT RT RT	81.4 81.4 304.7 71.7 71.7 733.7 733.7	10.75 10.75 10.75 5.50	13.25 13.25 13.25 13.25 18.50			922 1012 3241 4090 763 970 4051 13559					103 113 361 455 85 108 451 1507										6 23 6 74	6 20 5 27	5 19 5 63	5 17 4 24		6 7 22 27 5 6 27 90	8 8 27 34 6 8 34 113	0.02 0.06 0.02 0.14
	OUTSI	<u>de shol</u>	JLDER ADI	DITIONS AN	D REDUC	TIONS																								
$\begin{array}{r} 543+31.5\\ 18+83.0\\ 29+56.2\\ 34+82.9\\ 104+21.0\\ 120+87.1\\ 120+87.1\\ 120+65.0\\ 132+50.0\\ 138+05.5\\ 161+27.2\\ 161+04.0\\ 187+01.5\\ \end{array}$	$\begin{array}{r} 543+91.5\\ 27+05.6\\ 33+07.5\\ 35+11.0\\ 105+21.0\\ 121+05.0\\ 120+65.0\\ 120+83.0\\ 144+00.0\\ 139+28.0\\ 161+41.0\\ 161+41.0\\ 187+59.5 \end{array}$		60.0 822.6 351.3 28.1 100.0 17.9 18.2 18.0 1150.0 122.5 13.8 37.0 58.0		-0.33 0.83 0.83 -0.33 -0.17 0.83 -0.17 0.83 2.00 9.10 0.83 0.83 -0.33	-20 683 292 23 -33 15 -3 15 -3 15 -3 15 -3 15 -3 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 15 -7 -7 15 -7 -7 -7 15 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		<u>2100</u> 1117							-1 17 8 1 -2 1 -2 1 -2 28 1 -1 -1				7 1 1 56 30 1 1 4	5 21 9 1			4 2 1 1 1 1 1 2 7 1 1 1		4 2 1 1 1 1 0 6 1 1 1			5 2 1 1 1 1 1 4 8 1 1 1 1	6 3 1 1 1 1 18 10 1 1 1	
543+62.0 18+90.0 30+54.7 35+01.8 103+33.0 120+46.1 120+09.6 131+00.0 135+89.5 160+75.6 160+52.7 188+26.0	544+24.0 28+04.0 33+28.7 47+15.0 104+33.0 120+45.0 142+50.0 137+22.0 160+91.0 160+91.0 188+84.0	RT RT RT RT RT RT RT RT RT RT RT	62.0 914.0 274.0 1213.2 100.0 16.9 35.4 1150.0 132.5 15.4 38.3 58.0 CROSS	S OVER	-0.33 0.83 0.83 -0.33 0.83 0.83 2.00 7.10 0.83 0.83 -0.33	-20 759 227 1007 -33 14 29 2300 13 32 -19		2100 943							-1 19 6 25 -2 1 1 52 24 1 1 -1				7 1 1 56 25 1 1 4	5 23 7 30			5 2 6 1 1 12 6 1 1		4 2 5 1 1 1 10 5 1 1			6 2 7 1 1 1 4 7 1 1 1 1	7 2 9 1 1 1 1 8 8 1 1 1	
517+46.0	522+66.0	CL	520.0																											0.20
	I Ti	I SUBT SUBT SUBT OTALS C	TOTALS FR TOTALS FR TOTALS FR ARRIED TO	Com This Rom Shee Rom Shee D General	 Sheet T 217 T 218 L Summar	Y			0 122823 118773 241596	0 13635 13113 26748	0 616 616 1232	0 12209 12210 24419	6408 0 0 6408	0 3650 3647 7297	232 9036 8951 18219	0 12886 12722	0 12983 12244 51388	0 277 276	197 6945 6903 20	101 3358 3304 808	0 14143 13660 282	0 208 206 17	283 1946 1930 4159	117 4309 4168 8594	243 1670 1653 3566	103 3693 3573 7369	0 26232 26231 52463	455 7716 7516 15687	570 15999 15538 32107	0.69 7.70 7.70 16.09
																										ADL NO. OHIC RIGHT DESIGNET DRAWN: PROJI	DENDUM NFRAS D TURNP TWO LAI P/ C DUF ECT 35	NO. 1 REVISION HIO TUP TRUCT IKE EASTE NES & SHAVEMENT IN CHAR 9-15-02	IS INPIKE JRE CO BOUND AI IOULDER SUBSUMM Consul Irrefried ph Consul Irrefried	DLF 1/14/15 BY DATE AND DATE ND WESTBOUND RECONSTRUCTION IARY tants DATE: NOV., 2014 SCALE: NONE T 219 OF 419





ESIGNED BY: ATE: 05/27/ ATE: 05/27/ ATE: 05/27/

### TOLL PLAZA 218 WASTE SITE DEDUCT ALTERNATE

THIS DEDUCT ALTERNATE PROVIDES THE CONTRACTOR A WASTE AREA AT TOLL PLAZA 218, AS DETAILED ON THIS SHEET, FOR THE EXCAVATED EMBANKMENT AND CONCRETE PAVEMENT MATERIALS REMOVED FROM THE 39–15–02A PROJECT. ALL WORK DESCRIBED BELOW SHALL BE INCLUDED IN THE TOLL PLAZA 218 WASTE SITE DEDUCT ALTERNATE CREDIT. THIS CREDIT REPRESENTS THE DIFFERENCE BETWEEN THE COSTS TO TRUCK WASTE MATERIAL OFF COMMISSION PROPERTY COMPARED TO WASTING THE MATERIAL AT TOLL PLAZA 218, AS WELL AS ALL REQUIREMENTS DESCRIBED IN THIS NOTE. THE UNIT PRICES BID SHALL NOT REFLECT ANY COSTS WHICH APPLY TO SUCH TEMPORARY CONSTRUCTION, RESTORATION, OR REPAIR WORK, AND SUCH WORK SHALL NOT BE SEPARATELY MEASURED OR PAID FOR, BUT SHALL BE PERFORMED WITHOUT COST TO THE COMMISSION. IN THE EVENT THAT THE CONSTRUCTION OF THE TOLL PLAZA WASTE SITE IS NOT APPROVED BY THE CHIEF ENGINEER, THE CONTRACT SHALL PROCEED AS IF NO REQUEST OR BID HAD BEEN MADE FOR THE CONSTRUCTION THEREOF.

THE SCHEMATIC PLAN ON THIS SHEET PROVIDES ONLY GENERAL DETAILS OF THE ALLOWABLE WASTE SITE AREA, WITH A CAPACITY OF APPROXIMATELY 150,000 CY OF MATERIAL. THE CONTRACTOR AWARDED THIS CONTRACT SHALL PROVIDE A FORMAL PLAN SUBMITTAL FOR REVIEW AND APPROVAL BY THE CHIEF ENGINEER NO LATER THAN TWENTY-ONE (21) DAYS PRIOR TO THE INTENDED WASTE SITE WORK COMMENCEMENT. NO SUBMITTALS ARE DUE WITH THE BID DOCUMENTS. THE WASTE SITE PLAN SUBMITTAL SHALL INCLUDE, AT A MINIMUM:

- 1. EXISTING AND PROPOSED CONTOURS (ONE-FOOT INTERVALS), RAMPS, SITE ACCESS RAMPS, DRAINAGE, LIGHTING, UTILITIES, AND ALL OTHER DETAILS REQUIRED TO PERFORM THE PROPOSED WORK.
- 2. APPROXIMATE CUBIC YARDS OF MATERIAL TO BE DISPOSED OF AT THE WASTE SITE.
- 3. PROPOSED DRAINAGE PLAN DETAILING HOW WATER WILL BE CONVEYED OR CONTROLLED, INCLUDING ANY CHANNELS, DITCHES, SWALES AND/OR DRAINAGE STRUCTURES ALL REQUIRED DRAINAGE ELEMENTS SHALL BE DESIGNED IN ACCORDANCE WITH THE CURRENT ODOT DRAINAGE LOCATION AND DESIGN MANUAL, VOLUME 2.
- 4. TEMPORARY DITCH CROSSING DETAILS.
- 5. TEMPORARY SEDIMENT AND EROSION CONTROL BMPS REQUIRED FOR COMPLIANCE UNDER THE CLEAN WATER ACT, OHIO WATER POLLUTION CONTROL ACT, (OWPCA) (ORC CHAPTER 6111) AND THE NPDES PERMIT.

THE WASTE SITE PLAN AND CONSTRUCTION OPERATIONS SHALL ALSO MEET THE FOLLOWING REQUIREMENTS:

- 1. AS-BUILT DRAWINGS SHALL BE PROVIDED IN AUTOCAD, VERSION 2011 OR NEWER.
- 2. PRE AND POST TOPOGRAPHIC SURVEY PLAN OF THE ENTIRE AREA AFFECTED BY THE PROPOSED CHANGES SHALL BE STAMPED BY A PROFESSIONAL SURVEYOR LICENSED IN THE STATE OF OHIO.
- 3. ALL EXISTING TREES AND BRUSH SHALL BE REMOVED AND DISPOSED OF IN ACCORDANCE WITH SP105 AND THE ENDANGERED SPECIES - INDIANA BAT NOTE ON SHEET 16 OF 405 SHALL BE FOLLOWED.
- 4. FINAL GRADING AND SEEDING:
- A. WHEN WASTING PCC, MIX THE PCC WITH AT LEAST 30 PERCENT NATURAL SOIL TO CONSTRUCT AN INNER CORE IN THE WASTE AREA. { ALL MATERIAL BEING WASTED SHALL MEET THE STANDARDS FOR CLEAN } (HARD FILL PER OAC 3745-400-05.) COVER THIS INNER CORE WITH 3 FEET OF NATURAL SOIL ON THE ▲ TOP AND ON ALL SIDE SLOPES. PLACE AND COMPACT THE MATERIAL ACCORDING TO ITEM 203.06.D TO PREVENT FUTURE SETTLEMENT AND SLIDING.
- B. THE PRESENCE OF A SLAG BASE MATERIAL HAS BEEN VERIFIED UNDER THE EXISTING PAVEMENT AND CAN BE WASTED IN THIS DESIGNATED AREA. MATERIAL CONTAINING SLAG SHALL NOT BE WITHIN THE FIRST 3 FEET ABOVE GRADE.
- C. CONTRACTOR SHALL BEGIN FILLING THE WASTE AREA FROM THE WEST SIDE OF THE PROPOSED PILE AREA, THEN FILLING TOWARDS THE EAST.
- D. SLOPES SHALL BE CONSTRUCTED AT A 3:1 MAX WITH THE TOP SLOPING FROM THE CENTER WITH 12:1 MINIMUM GRADING.
- E. EXISTING TOPSOIL SHALL BE REMOVED, STOCKPILED, AND RE-SPREAD OVER THE ENTIRE INFIELD AREA. A MINIMUM THICKNESS OF 6" OF TOPSOIL SHALL COVER THE ENTIRE WASTE PILE.
- F. CONTRACTOR MAY TEST EXISTING SOIL WITHIN THE DESIGNATED WASTE SITE AREA TO VERIFY SUITABILITY FOR USE ON OTHER AREAS OF THE PROJECT. IF THE SOIL IS DETERMINED TO BE SUITABLE FOR OTHER USES, THE CONTRACTOR MAY USE THE WASTE SITE AREA FIRST AS A BORROW AREA. FINAL GRADING SHALL NOT CAUSE THE PONDING OF ANY WATER.
- G. THE COMMISSION RESERVES THE RIGHT TO MODIFY FINAL GRADING AND ELEVATIONS AS WORK PROGRESSES.
- H. RESTORATION OF ALL DISTURBED AREAS SHALL INCLUDE CLEANUP, SHAPING, REPLACEMENT OF TOPSOIL, AND ESTABLISHMENT OF VEGETATIVE COVER BY SEEDING AND MULCHING IN ACCORDANCE WITH ALL ITEMS 659. ENSURE THE RESTORED AREA IS WELL DRAINED.
- 5. IF REQUIRED, THE CONTRACTOR SHALL PROVIDE MAINTENANCE OF TRAFFIC CONTROLS IN ACCORDANCE WITH SP 614 AND OTIC STANDARD DRAWINGS, A FLAGGERS SHALL BE STATIONED AT ALL ACCESS POINTS TO CONTROL INGRESS/ EGRESS OF CONSTRUCTION VEHICLES ONTO ACTIVE ROADWAYS.
- 6. WASTE SITE ACCESS RAMPS:
- A. TURNPIKE RAMP TRAFFIC VOLUME MAY RESTRICT OR DICTATE WHEN OFF-ROAD TRUCKS OR CONSTRUCTION VEHICLES MAY CROSS ACTIVE RAMPS.
- B. ALL ACCESS POINTS SHALL BE CLOSED WITH BARRELS AND TYPE 3 BARRICADES WHEN NOT IN USE.
- C. STANDARD CONSTRUCTION ENTRANCES SHALL BE CONSTRUCTED IN ACCORDANCE WITH SWPPP REQUIREMENTS. ADJACENT TURNPIKE ACTIVE RAMPS PAVEMENT SHALL BE KEPT FREE FROM MUD AND DEBRIS.
- D. EARLY WARNING ADVISORY SIGNAGE MAY NEED TO BE PLACED AND ACTIVE WHEN WASTE SITE IS IN USE TO ADVISE TRAFFIC THAT CONSTRUCTION VEHICLES ARE CROSSING. ENTERING AND/OR EXITING.
- E. ALL CONSTRUCTION VEHICLES AND TRUCKS TRAVELING ON OR ACROSS ACTIVE TURNPIKE ROADWAYS SHALL COMPLY WITH ALL COMMISSION WEIGHT RESTRICTIONS





# PROJECT NO. 39-15-02 BID FORM

Ref.	Item		Approx.		Unit	Extended
No.	No.	Item Description	Quantity	Unit	Cost	Amount
		39-15-02 PART A - ROADWAY (Ref. Nos. 1 - 57)				
1	201	CLEARING AND GRUBBING	1	LUMP		
2	201	TREE REMOVED, 18" SIZE	50	EACH		
3	201	TREE REMOVED, 30" SIZE	5	EACH		
4	202	PIPE REMOVED	2,462	FT		
5	202	CATCH BASIN OR INLET REMOVED	53	EACH		
6	202	MANHOLE REMOVED	1	EACH		
7	202	FENCE REMOVED	500	FT		
8	202	GUARDRAIL REMOVED, AS PER PLAN	27,794	FT		
9	202	APPROACH SLAB REMOVED	1,224	SY		
10	202	CONCRETE BARRIER REMOVED	760	FT		
11	202	GUTTER REMOVED	330	FT		
12	202	PAVEMENT REMOVED, AS PER PLAN	241,596	SY		
13	203	EXCAVATION	<del>78,286</del> 81,157	CY		
14	203	EXCAVATION, AS PER PLAN	28,281	CY		
15	203	ROCK EXCAVATION, AS PER PLAN	18,850	CY		
16	203	EXCAVATION FOR SLOPE EROSION PROTECTION	1,538	CY		
17	203	EXCAVATION INCLUDING EMBANKMENT, AS PER PLAN	5,641	CY		
18	203	EMBANKMENT	35,688	CY		
19	203	EMBANKMENT, AS PER PLAN	18,850	CY		
20	203	GRANULAR EMBANKMENT, AS PER PLAN (NO. 8 AGGREGATE)	10	CY		
21	203	GRANULAR MATERIAL, TYPE C	20	CY		
22	203	BORROW	2,821	CY		
23	204	EXCAVATION	178	CY		
24	204	GEOTEXTILE FABRIC, 712.09 TYPE A	80	SY		
25	204	GEOTEXTILE FABRIC, 712.09 TYPE D	267	SY		
26	204	SUBGRADE COMPACTION	1,499	SY		
27	206*	LIME STABILIZED SUBGRADE, <del>12</del> <b>14</b> INCHES DEEP, AS PER PLAN	<del>172,500</del> 175,700	SY		
28	206*	LIME	<del>5,000</del> 5,090	TON		
29	206*	CEMENT STABILIZED SUBGRADE, 12 INCHES DEEP, AS PER PLAN	<del>82,000</del> 76,140	SY		
30	206*	CEMENT	<del>2,000</del> 1,590	TON		
31	206*	CURING COAT	<del>15,300</del> 15,110	GAL		
32	206*	TEST ROLLING	130	HOUR		
33	209	DITCH CLEANOUT	14,546	FT		
34	SPECIAL	CHANNEL CLEANOUT	1,496	SY		
35	SPECIAL	CONCRETE CHANNEL CLEANOUT	200	FT		
36	SP304	GRANULAR MATERIAL	178	CY		

# PROJECT NO. 39-15-02 BID FORM

Ref.	Item		Approx.		Unit	Extended
No.	No.	Item Description	Quantity	Unit	Cost	Amount
		39-15-02 PART A - ROADWAY Cont'd (Ref. Nos. 1 - 57)				
37	SP526	CLASS C CONCRETE, APPROACH SLAB, USING TYPE I CEMENT (T=12")	1220	SY		
38	SP536	CONCRETE WEATHERPROOFING, BARRIERS AND PARAPETS	937	SY		
39	606*	GUARDRAIL, TYPE MGS, USING LONG STEEL POSTS	26,225	FT		
40	606*	ANCHOR ASSEMBLY, MGS TYPE T, USING LONG STEEL POSTS	26	EACH		
41	606*	ANCHOR ASSEMBLY, MGS TYPE E, USING LONG STEEL POSTS, AS PER PLAN	28	EACH		
42	606*	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1, USING LONG STEEL POSTS	26	EACH		
43	606*	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	9	EACH		
44	606*	GUARDRAIL, BARRIER DESIGN, TYPE MGS	75	FT		
45	606*	IMPACT ATTENUATOR, TYPE 1, (BIDIRECTIONAL), AS PER PLAN	2	FT		
46	606*	GUARDRAIL REBUILT	25	FT		
47	607	FENCE, TYPE 47, AS PER PLAN	500	FT		
48	609	ASPHALT CONCRETE CURB, TYPE 1, PG64-22	3,796	FT		
49	609	CURB, TYPE 4-C	244	FT		
50	622	CONCRETE BARRIER, SINGLE SLOPE, TYPE D, AS PER PLAN	438	FT		
51	622	CONCRETE BARRIER, TYPE B-50, AS PER PLAN	340	FT		
52	622	CONCRETE BARRIER, TYPE C-50, AS PER PLAN	80	FT		
53	622	PORTABLE CONCRETE BARRIER, 32", AS PER PLAN	152	FT		
54	SP626	BARRIER REFLECTOR, TYPE A	317	EACH		
55	SP626	BARRIER REFLECTOR, TYPE B	281	EACH		
56	861	GEOGRID FOR SUBGRADE STABILIZATION, AS PER PLAN, TENSAR TRIAX 160 GEOGRID	267	SY		
57	SPECIAL	LIMESTONE SAND	2,500	CY		
57A	203	ROCK EXCAVATION FOR UNDERDRAIN INSTALLATION, AS PER PLAN	1,650	СҮ		
	TOTAL - 39-15-02 PART A - ROADWAY					

Ref.	Item		Approx.		Unit	Extended
No.	No.	Item Description	Quantity	Unit	Cost	Amount
		39-15-02 PART A - PAVEMENT (Ref. Nos. 111 - 133)				
111	251	PARTIAL DEPTH PAVEMENT REPAIR	300	SY		
112	252	FULL DEPTH PAVEMENT SAWING	<del>1,500</del> <b>15,000</b>	FT		
113	254	PAVEMENT PLANING, ASPHALT CONCRETE (3-1/4")	6,408	SY		
114	254	PAVEMENT PLANING, ASPHALT CONCRETE (9")	7,297	SY		
115	254	PAVEMENT PLANING, ASPHALT CONCRETE (VARIABLE DEPTH)	1,756	SY		
116	255	FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS C	400	SY		
117	255	FULL DEPTH PAVEMENT SAWING	1,500	FT		
118	SP302	ASPHALT CONCRETE BASE, PG64-22 (SHOULDER)	18,219	CY		
119	SP302	ASPHALT CONCRETE BASE, PG64-22	51,388	CY		
120	SP304	AGGREGATE BASE (SHOULDER)	20,808	CY		
121	SP304	AGGREGATE BASE	28,217	CY		
122	SP402	ASPHALT CONC. BASE COURSE OR RECYCLED ASPHALT CONC. BASE COURSE, PG64-22	4,159	CY		
123	SP402	ASPHALT CONC. BASE COURSE OR RECYCLED ASPHALT CONC. BASE COURSE, PG70-22 (FR)	8,594	CY		
124	SP404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG64-22	3,640	CY		
125	SP404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG70-22 (FR)	7,369	CY		
126	SP404A	JOINT SEALER	53,983	FT		
127	SP407	TACK COAT FOR INTERMEDIATE COURSE, AS PER PLAN	15,793	GAL		
128	SP407	TACK COAT, AS PER PLAN	32,107	GAL		
129	617	SHOULDER PREPARATION, AS PER PLAN	29,079	SY		
130	617	COMPACTED AGGREGATE	1,491	CY		
131	SP627	STONE SHOULDER PROTECTION	2,047	TON		
132	SPECIAL	SONIC NAP ALERT PATTERN (SNAP)	16.09	MILE		
133	SPECIAL	SAW CUT JOINT (9"±)	25,939	FT		
TOTAL - 39-15-02 PART A - PAVEMENT						

# PROJECT NO. 39-15-02 BID FORM