
Ohio Turnpike Commission Noise Mitigation Study Pilot Program Summary Report Contract No. 71-08-02

Ohio Turnpike Commission 682 Prospect Street Berea, Ohio 44017

Prepared By:

Ohio Turnpike Commission

November 2009

Noise Mitigation Study Pilot Program Summary Report Ohio Turnpike Commission Contract No. 71-08-02

TABLE OF CONTENTS

Ρ	A	G	E
_			

Pilot Program Summary	
Background	.1
Introduction	.1
"T"-Top Noise Barrier Wall Pilot Program	2
Pilot Program Objective	
Noise Modeling Field Measured Noise Levels	
Existing Condition – Pre-Construction Noise Measurements	
Post-Construction Noise Measurement – With Barrier Wall Only	
Post-Construction Noise Measurement – Noise Barrier Wall with "T"-Top	
Summary	.9
Median-Mounted Acoustic Panels	10
Pilot Program Objective	
Field Measured Noise Levels	
Existing Condition – Pre-Construction Noise Measurements	
Post-Construction Noise Measurements	
Noise Modeling	
Summary	
Summary	12
Final Project Summary	14
TABLES	
Table 1 – "T"-Top Noise Barrier Wall Traffic Volume Summary	.6
Table 2 – "T"-Top Noise Wall Pre-Construction Noise Measurements	.5
Table 3 – "T"-Top Noise Wall Pre-Construction Noise Measurements Noise Barrier Only	.7
Table 4 – "T"-Top Noise Wall Pre-Construction Noise Measurements with "T" Top	.8
Table 5 – "T"-Top Noise Wall Summary	.9
Table 6 – Median-Mounted Acoustic Panels Traffic Volume Summary	11
Table 7 – Median-Mounted Acoustic Panels Pre-Construction Noise Measurements1	
Table 8 – Median-Mounted Acoustic Panels Post-Construction Noise Measurements1	12
Table 9 – Median-Mounted Acoustic Panels Noise Summary	13

APPENDICES

Appendix A – Figures

Figure 1 – Pilot Program Locations

Figure 2A – "T"-Top Noise Barrier Wall Noise Receptor Locations

Figure 2B – Median-Mounted Acoustic Panels Noise Receptor Locations

Appendix B – Field Measured Noise Levels – "T"-Top Noise Barrier Wall

Appendix C – Field Measurement Noise Levels - Median-Mounted Acoustic Panels

Appendix D – TNM Model Results – "T"-Top Noise Barrier Wall

Appendix E – TNM Model Results - Median-Mounted Acoustic Panels

Ohio Turnpike Commission Noise Mitigation Study Pilot Program Summary Report November, 2009

Background

In accordance with the requirements of Am. Sub. H.B. 67 of the 127th General Assembly, TranSystems was selected to perform a study of noise impact mitigation measures to be used along the Ohio Turnpike. As part of this study, alternatives to the traditional concrete noise barrier walls were evaluated and recommended for implementation through a pilot program. The study, Project Number 71-08-02, examined the viability of alternative noise abatement measures to reduce the existing noise levels along the Turnpike.

Seven innovative noise mitigation measures including quiet pavement technology, modified top noise barrier walls, noise insulation and land use planning, noise absorption treatments and natural barriers were evaluated for use along the Turnpike. Following the evaluation, two noise mitigation measures were selected for implementation as part of a pilot program: 1) construction of an absorptive concrete noise barrier wall using an innovative T-top treatment and, 2) construction of median-mounted noise absorptive acoustic panels on the existing concrete median.

A total of 67 noise sensitive areas (NSA) were identified along the length of the Ohio Turnpike, most being located in the vicinity of Toledo and in the suburbs south of Cleveland. An NSA is described as an area of residential structures, schools, hospitals, or similar land use where increased traffic noise levels could interfere with the use of exterior space. All of the 67 NSAs were considered for the pilot program but those exhibiting certain criteria were determined as optimal locations for the program. The criteria included a level location with a view of the turnpike, locations having no secondary noise sources, a tight grouping of receptors and a compact location less than 800 feet in length. Following consideration, it was determined that NSA 39 would be used for the T-Top noise barrier wall pilot program and NSA 47 would be used for the median-mounted acoustic panel pilot program. The relative locations of NSA 39 and NSA 47 are shown on Figure 1.

Introduction

This Pilot Program Summary will detail the levels of noise reduction provided by the two mitigation measures that were implemented along the Ohio Turnpike. NSA 39 is located near mile marker 158 on the south side of the turnpike just west of the Sprague Road overpass in Berea, Ohio. NSA 39 was used to test the effectiveness of the T-Top concrete noise barrier wall. The first step in each of the Pilot Programs was to determine the existing or pre-construction noise levels at several locations within each NSA through field monitoring. The second step of the pilot program at NSA 39 monitored noise levels at the same pre-construction locations following the construction of the noise barrier wall without the T-top. The third step at NSA 39 monitored the same receptor locations once the T-top had been placed on top of the noise wall. The third step was used to determine the final post-construction noise level and the additional level of noise reduction the "T" contributed to the noise wall.

NSA 47 is located near mile marker 164 on the south side of the turnpike just west of West 130th Street in Strongsville, Ohio. NSA 47 was used to evaluate the effectiveness of the noise absorptive panels placed on the existing concrete median. Similar to NSA 39 pre-construction noise levels were monitored at four locations prior to the installation of the acoustic panels. Post-construction noise monitoring at NSA 47 consisted of measuring the noise levels at the same pre-construction locations to determine the level of

noise reduction provided by the acoustic panels. The final step in the Pilot Program Summary compared the post-construction noise levels of the two innovative measures to a traditional concrete noise barrier wall using the FHWA Traffic Noise Model (TNM).

"T"-TOP NOISE BARRIER WALL PILOT PROGRAM

"T"-TOP NOISE BARRIER WALL PILOT PROGRAM

Pilot Program Objective

The objective of the "T"-Top Pilot Program was to determine the level of noise reduction that could be obtained by modifying the top edge of a traditional concrete noise barrier wall. In theory, the effectiveness of a traditional noise barrier wall of a given height may be increased by bringing the diffracting edge of the barrier closer to the source of noise. This increases the length of the noise energy path between source and receptor thereby resulting in additional noise attenuation. Placing a horizontal panel on top of a traditional noise barrier wall moves the diffracting edge closer to traffic. Furthermore, increasing the number of diffracting edges on the top surface of a noise barrier wall will also improve noise attenuation. Research on modified top noise barriers in Japan and Europe projected that a "T"-profile top edge noise barrier wall could reduce noise levels in a residential area behind a noise barrier by 1.0 to 1.5 decibels (dBA), when compared with a conventional vertical barrier of the same height. This 1.0 to 1.5 dB reduction would equate to a reduction in height of a traditional noise barrier wall by two to three feet, with a potential average reduced height of 2.5 feet, while achieving the same level of noise reduction. To test the above research, the pilot program used an eight-foot high noise barrier wall with a "T" panel extending one foot over the top of the barrier on the side facing traffic and 15 ½ " over the top of the barrier on the residential side of the wall. The difference is a result of placing 3 ½ " of absorbent material on the side of the barrier facing traffic to prevent noise from reflecting off the barrier and potentially effecting residents on the opposite side of the turnpike. A photograph of the completed "T"-top noise wall in shown in the photo below. The goal of the "T"-top pilot program was to achieve the same level of noise attenuation with the eight-foot high "T" wall that could be obtained with a traditional 10.5' high noise barrier.

Noise Modeling

For all three scenarios, noise levels were modeled at the same representative locations using the FHWA TNM Version 2.5 using traffic volumes counted during the field measurement periods. The purpose of noise modeling for the pre-construction scenario is to calibrate the noise model to simulate site specific conditions. Terrain lines, elevations, building rows and vegetation zones can be edited in the model so that measured levels and modeled levels can be accurately compared. The purpose of noise modeling for the post-construction noise barrier wall is similar to the pre-construction scenario except this time a traditional noise barrier is entered into the model. The purpose of the noise modeling for the post-"T" installation is to estimate, by noise modeling, what height of noise barrier wall would need to be constructed to match the noise reduction contributed by the "T"-top.

Modeling technology is not available to predict the level of noise reduction that could be expected with a "modified top noise barrier wall. For the pilot program, noise levels were both field monitored and modeled (using the FHWA TNM) at eight receptor sites under three scenarios: 1) the existing condition with no noise wall; 2) with a traditional eight-foot high noise barrier wall, and; 3) monitoring the eight-foot high "T" wall compared to a modeled 10.5-foot high noise barrier wall.

Field Measured Noise Levels

For all three scenarios, noise measurements were recorded at eight representative sites which are shown on Figure 2. The measurement sites were situated at residential dwellings where frequent outdoor use would occur (deck, swimming pool). Receiver 1 was located at a residential dwelling near the eastern end of the noise barrier wall. This location was selected to evaluate typical levels of noise reduction for dwellings located near the end of the barrier and only partially protected by the noise barrier wall. The noise barrier wall would have to extend approximately 100' further east to provide full coverage to receiver 1. Receivers 2, 3 and 4 are considered front row receptors located near the middle of the noise barrier wall. These sites were located to evaluate the typical levels of noise reduction where dwelling units are completely protected by the noise barrier. The maximum level of noise reduction would be expected to occur at receivers 2, 3 and 4. Receiver 5 is located at the west end of the noise barrier wall and only partially protected by the noise barrier. Receiver 6 is located in a park near the west end of the noise barrier wall in an area unprotected by the noise barrier wall. Receiver 6 was located as a control site in an area unaffected by the noise barrier wall. Even though field measurements were collected around the same time of day and around the same day of the week, it was expected that traffic volumes, vehicle mix and other ambient noise sources would vary from day to day as field measurements were taken. These changing variables were out of the study control. Noise measurements were taken at this location as a baseline to compare how the receivers were affected by inconsistencies in the traffic. Receiver 8 is considered representative of second row dwelling units shielded from traffic noise by the front row receptors. Receiver 7 is considered representative of third row dwelling units shielded from traffic noise by the first and second row of dwelling units.

Noise levels were monitored during the worst hour condition when truck volumes are at their highest and vehicle speeds are the greatest, typically when traffic is free-flowing. Noise measurements were performed in accordance with the FHWA Report Number FHWA-PD-96-046, *Measurement of Highway Related Noise* (May, 1996). Measurements were taken at representative receptor sites for twenty (20) minute intervals. The noise meter was tripod mounted with the microphone at a distance of approximately 4.9 feet above ground level and angled toward the dominate noise source. A foam windscreen was used for all noise measurements. Noise measurements were recorded with a Quest 2900 Type 2 Data Logging SLM. The

noise meter continuously measures and records the ambient noise level and integrates these values into a L_{eq} for the duration of the reading.

A concern during the noise monitoring periods was to record the field measurements under similar conditions to best insure that the traffic volume and the vehicle mix would be similar. Similar traffic volume and vehicle mix would help insure an accurate presentation of the effectiveness of the mitigation measure and not have results skewed by wide ranging volume or dissimilar vehicle mix. All field measurements were taken on Tuesday or Thursday between the hours of 8:15 AM and 1:15 PM. During each of the noise monitoring intervals, simultaneous data including traffic volume, speed, and vehicle composition were collected. Traffic volumes were counted on Thursday May 28, 2009 prior to construction, on Tuesday September 1, 2009 following the construction of the noise barrier wall and on Thursday October 8, 2009 following the installation of the "T"-top. The traffic volumes for all three intervals are shown on Table 1. In general, traffic volume during all measurement intervals were quite similar ranging no more than 20% between the highest and lowest automobile and truck volumes. Considering the fact that noise is measured on a logarithmic scale, the difference in traffic volume should be of no consequence to the resulting noise levels.

Existing Condition - Pre-Construction Noise Measurements

Noise measurements were taken at seven locations during the hours of 9:00AM to 1:00PM on Thursday May 28, 2009. A printout of the pre-construction noise measurements for the "T"-top noise wall is provided in Appendix B and summarized in Table 2.

Table 2.											
	"T"-Top Noise Wall										
	Pre-Const	ruction Noise Measure	ments May 28, 20	09							
		Field Measured	Modeled Level	Difference in modeled level							
Receiver	Time	Levels	dBA	over measured level dB							
		dBA									
1	9:12-9:32 AM	63.3	64.5	1.2							
2	9:41-10:01 AM	67.6	69.6	2.0							
3	10:26-10:46 AM	71.3	72.2	0.9							
4 and 5	11:01-11:21 AM	74.1	73.6	0.5							
6	11:29-11:49 AM	68.0	69.3	1.3							
7	11:57-12:17 PM	56.4	59.8	3.4							
8	12:24-12:44 PM	59.8	60.4	0.6							

During the pre-construction noise measurement period, simultaneous data including traffic volume, speed, and vehicle composition were collected. Traffic volume counted on May 28, 2009 is shown in Table 1. Traffic data were input into TNM V2.5 to calibrate the measured noise level with the modeled noise level at each representative site. Table 1 presents the TNM modeled noise levels based on the observed traffic data. The table also presents a comparison of the measured levels to the modeled levels at each representative receptor site. All of the pre-construction noise measurement sites (except receiver 7) are within ±3 dB of the TNM predicted noise levels. This indicates an accurate representation of field measured noise levels when compared to the site-specific modeled conditions.

Table 1.										
"T"-Top Noise Barrier Wall Pilot Program										
	Traffic Volume Summary									
	Р	re-Constructi	on	With No	ise Barrier Wall (Only	With Noise	Barrier Wall	and "T" Top	
	May 28, 2	2009 – 9:15 –	10:15 AM	September	1, 2009-8:04 - 9	:04 AM	October 8	3, 2009 - 7:59	9-8:59 AM	
	EB	WB	Total	EB	WB	Total	EB	WB	Total	
Automobile	864	726	1,590	901	710	1,611	1034	784	1818	
Medium Trucks	52	22	74	62	28	80	42	26	68	
Heavy Trucks	324	336	660	382	384	766	365	377	742	
Motorcycles	0	2	2	2	3	5	1	1	2	
	May 28, 2	2009 – 10:30-	11:30 AM	September 1, 2009 - 1:05-2:05 PM			October 8, 2009 - 1:35-2:35 PM			
	EB	WB	Total	EB	WB	Total	EB	WB	Total	
Automobile	757	719	1,476	766	822	1588	789	871	1660	
Medium Trucks	edium Trucks 31 36 67		67	46	42	88	35	38	73	
Heavy Trucks 303 315 618				337	356	693	347	315	662	
Motorcycles	1	6	7	2	0	2	0	4	4	

Post-Construction Noise Measurement - With Noise Barrier Wall Only

Noise measurements were taken at eight locations between the hours of 8:15 AM to 11:45 AM on Tuesday September 1, 2009. A printout of the post-construction noise measurements with the noise barrier wall only is provided in Appendix B and summarized in Table 3.

Table 3.											
	"T"-Top Noise Wall Noise Measurements										
		Noise Barrier Only	- September 1, 200	9							
Receiver	Time	Field Measured	Modeled Noise	Difference in modeled levels over							
Receiver	Time	Noise Levels	Levels	measured levels dB							
1	9:15-9:36 AM	62.2	63.5	1.3							
2	9:42-10:02 AM	64.8	65.9	1.1							
3	10:17-10:37 AM	66.1	67.6	1.5							
4	10:45-11:05 AM	68.9	69.0	0.1							
5	11:09-11:24 AM	73.7	72.8	0.9							
6	11:27-11:42 AM	69.5	69.0	0.5							
7	11:46-12:06 PM	53.9	59.8	5.9							
8	12:23-12:43 PM	56.7	59.5	2.8							

Again, during the noise measurement period, simultaneous data including traffic volume, speed, and vehicle composition were collected. Traffic volume counted on September 1, 2009 is shown in Table 1. Traffic data were input into TNM V2.5 to calibrate the measured noise level with the modeled noise level at each representative site. Table 3 also presents the TNM modeled noise levels based on the observed traffic data. The table compares the measured levels to the modeled levels at each representative receptor site. All of the post barrier installation noise measurement sites (except receiver 7) are within ±3 dB of the TNM predicted noise levels. This indicates an accurate representation of field measured noise levels when compared to the site-specific modeled conditions. For some unknown reason, the modeled and measured noise levels at Receiver 7 are different in both the pre-construction and post-construction scenarios. The model may be measuring a reflection that is not accurately represented from field conditions. In cases where one location is not in agreement it is assumed that the field measured level is correct.

Post-Construction Noise Measurement - Noise Barrier Wall with "T"-Top

Noise measurements were taken at eight locations between the hours of 9:14 AM to 1:18 PM on Thursday October 8, 2009. This round of noise measurements recorded the level of noise reduction added by the installation of the "T"-top on top of the noise barrier wall. A printout of the post-construction noise measurements with the "T"-top installed on the noise wall is provided in Appendix B and summarized in Table 4. The "T"-top added an additional noise reduction of approximately 1.2 dB to those dwelling units located adjacent to the noise barrier wall. The representative receptor located in the second row of dwelling units received an additional 0.3 dB in noise reduction and the representative receptor located in the third row received an additional noise reduction of 0.2 dB.

	Table 4. "T"-Top Noise Wall Noise Measurements Post "T" Installation – October 8, 2009										
		Field Measure	ed Noise Levels	Noise Reduction	Simulated Noise Wall at	Comparison of simulated					
Rec.	Time	Barrier Only	Barrier and "T"	Contributed by "T"	an Average Height of 10.25'	10.25' wall to 8' "T"-wall					
1	9:14-9:30 AM	62.2	61.7	0.5	61.7	0.0					
2	9:41-10:01 AM	64.8	63.6	1.2	63.4	0.2					
3	10:12-10:32 AM	66.1	65.0	1.1	64.7	0.3					
4	10:48-11:08 AM	68.9	67.7	1.2	67.0	0.7					
5	11:09-10:29 AM	73.7	73.8	+0.1	72.7	1.1					
6	11:32-11:52 AM	69.5	69.7	0.2	68.9	0.8					
7	12:01-12:21 PM	53.9	53.7	0.2	59.3	N/A					
8	12:58-1:18 PM	56.7	56.4	0.3	58.7	2.3					

The objective of the "T"-Top noise barrier wall pilot program was to test the theory that by modifying the top of a standard wall with a "T" shape could provide an additional 1.0 to 1.5 dB noise reduction. The program demonstrated that the objective range of noise reduction could be attained near the center of the noise barrier wall where noise reductions are generally greatest. The level of noise reduction for receivers near the wall ends and in the second and third row or receivers could not be achieved. As also shown in Table 4, the simulated noise reduction for a noise barrier wall with the "T". Therefore the "T"-Top noise barrier wall does equate to a reduction in height of a traditional noise barrier wall by an average of approximately 2.25 feet. The field measured and modeled levels at receiver 7 have not compared similarly throughout the study and are considered not applicable for results comparison. Based on one location, receiver 8, it appears that the "T"-top noise wall provides a greater level of noise at the third row of receptors sites than the simulated noise barrier wall would provide.

Table 5 shows the overall performance of the "T"-top noise barrier wall. According to the ODOT noise policy and guidance, a substantial noise reduction is considered to be 5 dB or greater. The noise barrier provided receivers 3 and 4 a substantial noise reduction. Receivers 3 and 4 are representative of five residential dwelling units. ODOT policy further considers any dwelling unit that receives a 3 dB or greater noise reduction to be a benefitted receiver. As shown in Table 5, receivers 2 and 8 would experience a noise reduction of 3 dB or more. Receivers 2 and 8 are representative of six residential dwelling units. A total of eleven residential dwelling units are considered benefitted by the "T"-top noise barrier wall. At an average cost of \$29 ft², the "T"-top barrier cost \$284,737 or \$25,885 per benefitted receptor. To achieve the same level of noise reduction with a traditional concrete noise barrier wall, a 10.25' high wall at \$25 ft² would cost \$315,000 or approximately \$28,636 per benefitted receptor. The "T"-top noise barrier wall would translate into a cost savings of approximately \$25 per lineal foot.

Table 5. "T"-Top Noise Wall "T"-Top Noise Wall Summary										
Receiver	Pre- Noise Levels with "T" Reduction Reduction									
1	63.3	62.2	61.7	0.5	1.6					
2	67.6	64.8	63.6	1.2	4.0					
3	71.3	66.1	65.6	1.1	5.7					
4	74.1	68.9	67.7	1.2	6.4					
5	74.1	73.7	73.8	None	0.3					
6	68.0	69.5	69.7	None	None					
7	56.4	53.9	53.7	0.2	2.7					
8	59.8	56.7	56.4	0.3	3.4					

Summary

The objective of the "T"-Top noise barrier wall pilot program was to test the theory that by modifying the top of a standard noise barrier wall with a "T" shape top, a shorter "T"-top noise barrier wall could provide a similar level of noise reduction as a higher traditional noise barrier wall. Furthermore a reduction in noise barrier height would result in a less expensive noise abatement measure. The "T"-top provided an additional 1.2 dB noise reduction to centrally located receptors directly behind the barrier wall. The FHWA TNM was used to simulate a noise barrier wall that would provide the same level of noise reduction as the "T"-top and determined that a standard 10.25' high noise barrier would be necessary to provide the same level of noise reduction as the 8' high "T"-top noise barrier. The "T"-top wall would provide a cost savings of almost \$30,000 dollars compared to a standard noise barrier wall. The "T"-top noise wall should be considered as a viable option for future use as a noise abatement measure based on the cost savings and similar levels of noise reduction as a traditional noise barrier wall.

MEDIAN-MOUNTED ACOUSTIC PANELS PILOT PROGRAM

MEDIAN-MOUNTED ACOUSTIC PANELS

Pilot Program Objective

The objective of the median-mounted acoustic panel pilot program was to determine the level of noise reduction that could be obtained by constructing noise absorbent acoustic panels on top of the existing concrete median. It was assumed that panels placed on the concrete median at a total height (median + panels) of 10'-4" would screen out almost all the noise energy generated by traffic in the westbound travel lanes. It was further assumed that the panels may also absorb some of the noise energy reflected off the concrete median and not be bounced back towards the receptors on the south side of the Turnpike. Noise is measured on a logarithmic scale and if the panels could screen out and absorb at least one half of the noise energy generated from the turnpike, noise levels could be reduced by a minimum 3dB. If obtained, this level of noise reduction would be perceptible by most persons. A photograph of the median-mounted acoustic panels, as viewed from the eastbound traffic lanes, is shown below.

Field Measured Noise Levels

An important concern during the noise monitoring periods was to take the field measurements on both days at similar times to best insure that the traffic volume and the vehicle mix would be similar. Similar traffic volume and vehicle mix would help insure an accurate presentation of the effectiveness of the mitigation measure and not have results skewed by wide ranging volume or dissimilar vehicle mix. Both field measurements were taken on a Wednesday between the hours of 9:15 AM and 11:30 AM. During each of the noise measurement periods, simultaneous data including traffic volume, speed, and vehicle composition were collected. Traffic volumes were counted on Wednesday May 27, 2009 prior to construction. Traffic volumes were counted on Wednesday October 21, 2009 following the installation of the acoustic panels. The traffic volumes are shown in Table 6. In general, the traffic volume on both days were similar with automobile volume and medium truck volume being slightly lower during the second round of monitoring but this was countered with heavy truck volume being higher during the second round of monitoring. Considering the fact that noise is measured on a logarithmic scale the difference in traffic volume is almost of no consequence to the resulting noise levels.

Table 6. Median-Mounted Acoustic Panels Traffic Volume Summary									
	May 27,	2009 - 9:	15-10:15 AM	October 21,	2009-10:30	-11:30 AM			
	EB	WB	Total	EB	WB	Total	Difference		
Automobile	796	868	1,664	633	690	1,323	-20%		
Medium Trucks	Medium Trucks 50 51 101			33	45	78	-23%		
Heavy Trucks	505	325	302	627	+24%				
Motorcycles	1	0	1	3	0	3			

Existing Condition - Pre-Construction Noise Measurements

Noise measurements were taken at four receivers during the hours of 9:00AM to 11:00AM on Wednesday May 27, 2009. The noise receiver locations are shown on Figure 2. Receiver 1 is considered a front row receptor located near the middle of the median-mounted acoustic panels. The site was located to evaluate the typical level of noise reduction where dwelling units are completely shielded by the acoustic panels. The maximum level of noise reduction would be expected to occur at receiver 1. Receiver 2 is also considered a front row receptor and is located very close (less than 100' south) to the eastbound lanes of the Turnpike. The receiver was located at this location to determine what level of noise reduction the acoustic panels would have on a location in close proximity to the travel lanes. Receiver 3 is considered representative of second row dwelling units shielded from traffic noise by the front row receptors. Receiver 4 is located near a residential dwelling near the west end of the acoustic panels in an area not shielded by the panels. Receiver 4 was located as a control site in an area unaffected by the acoustic panels. Even though field measurements were collected around the same time of day and the same day of the week, it was expected that traffic volumes, vehicle mix and other ambient noise sources would vary from day to day as field measurements were taken. These changing variables were out of the study control. Noise measurements were taken at this location as a baseline to compare how the receivers were affected by inconsistencies in the traffic. Noise levels recorded at NSA 47 prior to installation of the acoustic panels are summarized in Table 7.

	Table 7. Median-Mounted Acoustic Panels Pre-Construction Noise Measurements May 27, 2009									
Receiver Time Lmin dBA Lmax dBa Leq dBA Modeled Level dBA Difference in modeled level ov measured level or										
1	9:15-9:35 AM	55.9	77.9	67.3	69.5	2.2				
2	9:37-10:57 AM	55.3	83.7	71.4	71.7	0.3				
3	3 10:00-10:20 AM 53.0 72.7 64.9 65.3 0.4									
4	10:25-10:45 AM	52.1	70.3	59.7	60.5	0.8				

Again, during the noise measurement period, simultaneous data including traffic volume, speed, and vehicle composition were collected. Traffic volume counted on September 1, 2009 is shown in Table 6. Traffic data were input into TNM V2.5 to calibrate the measured noise level with the modeled noise level at each representative site. Table 6 also presents the TNM modeled noise levels based on the observed traffic data. The table compares the measured levels to the modeled levels at each representative receptor

site. All of the measurement sites are within ± 3 dB of the TNM predicted noise levels. This indicates an accurate representation of field measured noise levels when compared to the site-specific modeled conditions.

Post-Construction Noise Measurements

Noise measurements were taken at four locations between the hours of 11:41 AM to 12:51 PM on Wednesday October 21, 2009. The measured noise levels are summarized in Table 8.

	Table 8.									
	Median-Mounted Acoustic Panels									
	Post	t-Constructi	on Noise Me	asurements	October 21, 2009					
Receiver	Timo				Pre-Construction	Decrease in Noise				
Receiver	Time	$L_{min} dBA$	L _{max} dBA	$L_{eq} dBA$	Noise Level dBA	Level dB				
1	11:41-12:01 PM	52.3	77.9	65.1	67.3	2.2				
2	12:06-12:26 PM	52.9	83.3	71.0	71.4	0.4				
3	12:55-1:15	53.0	72.7	62.9	64.9	2.0				
4	12:31-12:51 PM	51.6	69.2	58.8	59.7	0.9				

The objective of the median-mounted acoustic panels pilot program was to determine the level of noise reduction that could be obtained by constructing noise absorbent acoustic panels on top of the existing concrete median. It was expected that a minimum 3dB noise reduction could be attained by the acoustic panels. The program demonstrated that the range of noise reduction could not be attained at any of the receiver sites. As shown in Table 8, the maximum level of noise reduction achieved by the panels was around 2.2 dB at the receiver site near the middle of the acoustic panels. The receiver site representative of the second row of receivers achieved a similar noise reduction of 2.0 dB.

Noise Modeling

For all three scenarios, noise levels were modeled at the same representative locations using the FHWA TNM Version 2.5 using traffic volumes counted during the field measurement periods. The purpose of noise modeling for the pre-construction scenario is to calibrate the noise model to simulate site specific conditions. Terrain lines, elevations, building rows and vegetation zones can be edited in the model so that measured levels and modeled levels can be accurately compared.

To evaluate the future viability of the median-mounted acoustic panel as a potential mitigation method, the level of noise reduction and cost the pilot program were compared to noise reduction ability and average cost of a traditional concrete noise barrier wall. The total cost of the acoustic panel pilot program was \$166,409. TNM was used to compare the cost of a traditional concrete noise barrier wall to the acoustic panel program, by simulating a traditional concrete noise barrier placed along the turnpike right-of-way line. At a cost of approximately \$25 ft², a noise barrier consisting of 6,656 ft² could be constructed at total cost of \$166,400 – approximately the same cost of the acoustic panel program. A traditional concrete noise barrier wall along the south right of way line was simulated at a length of 665 feet and average height of 10 feet. A noise barrier wall in this configuration would provide a noise reduction ranging from 1 to 8 dB with two dwelling units receiving a noise reduction of greater than 3 dB. Results of the measured noise reduction provided by the acoustic panels are shown in Table 9. Also shown in the table is the expected noise reduction that would be provided by a traditional noise barrier wall at a similar cost.

Table 9.										
	Median-Mounted Acoustic Panels									
			Noise Summar	У						
Receiver	Pre- Construction Noise Level	Measured Noise Level	Decrease in Noise Level	Noise Reduction with Simulated Traditional	Decrease in Noise Level with Concrete					
		with Acoustic Panels	with Acoustic Panels	Concrete Noise Barrier Wall	Noise Barrier Wall					
1	67.3	65.1	2.2	65.6	1.7					
2	71.4	71.0	0.4	62.7	8.7					
3	64.9 62.9		2.0	61.9	3.0					
4	59.7	58.8	0.9	58.7	1.0					

Summary

The objective of the median-mounted acoustic panel pilot program was to test the theory that by blocking noise created by one directional flow of traffic (in this case the westbound traffic lanes) noise levels would drop by 3 dB at receptors located on the south side of the turnpike. Additional noise reduction could also occur by absorbing some reflected noise off the concrete median. As shown in Table 9, the maximum level of noise reduction provided by the acoustic panels was 2.2 dB and below the anticipated 3dB noise reduction. A minimum 3 dB noise reduction would be necessary to be perceptible by most persons. Based on the ODOT Noise Policy, the 2.2 dB level of noise reduction is not considered a substantial noise reduction and the median-mounted acoustic panels would not be considered a feasible noise abatement measure. TNM was used to simulate a noise barrier wall that could be constructed at the same relative cost as the acoustic panels to determine which abatement measure would provide the highest level of noise reduction at the same cost. As shown in Table 9, a 10' high noise barrier wall at a length of 573 feet would provide an 8.7 dB noise reduction at receiver 2. According to ODOT Noise Policy the noise barrier wall could provide a substantial noise reduction and would be considered a feasible noise abatement measure. One additional receiver site would experience a 3 dB noise reduction and would also be considered a benefitted receptor site.

The pilot program demonstrates that a traditional concrete noise barrier wall would provide a much greater level of noise reduction than the median-mounted acoustic panels at the same relative cost. Therefore, median-mounted acoustic panels would probably not be considered as a viable, cost effective option for noise abatement at other locations along the Ohio Turnpike.

FINAL PROJECT SUMMARY

The Ohio Turnpike Commission Noise Mitigation Study was undertaken to investigate and evaluate innovative noise abatement measures that could be used along the turnpike while maintaining compliance with both the FHWA and the ODOT traffic noise analysis and abatement policy and guidance documents. Two innovative abatement measures, a "T"-top noise barrier wall and median-mounted acoustic panels were constructed, monitored and evaluated at noise sensitive areas 39 and 47 respectively. The standard noise abatement measure used throughout Ohio and the United States is the concrete noise barrier wall. The overall noise reduction capabilities and costs of the innovative noise abatement measures were compared to the noise reduction capability and average cost of a traditional concrete noise barrier wall to determine whether the innovative measures may be a cost-effective and viable for future use along the turnpike.

The "T"-top pilot program determined that an eight-foot high "T"-top noise barrier wall could provide the same level of noise reduction as a 10.25-foot high traditional concrete noise barrier wall. For cost comparison, the actual construction cost of \$29 ft² for the "T"-top wall was compared to the average cost, per ODOT, for a traditional noise barrier wall of \$25 ft². Though the "T"-top wall costs more per square foot, the pilot program determined that the overall cost of the "T"-top noise barrier wall (\$284,737) would be less than the cost of a traditional noise barrier wall (\$315,000). A "T"-top noise wall can provide the same level of noise reduction as a traditional wall at a slightly lower cost than the traditional noise barrier wall. Depending on site-specific conditions, a "T"-top noise wall could be a cost effective and viable option for future noise mitigation.

The median-mounted acoustic panels were not able to provide a level of noise reduction (3 dB) that would be perceptible to most people. When comparing the total cost of the median-mounted acoustic panels (\$166,409) to the total cost of a traditional concrete noise barrier wall (\$166,400) the concrete noise barrier wall provides a much higher level of noise reduction at the same cost. Further use of median-mounted acoustic panels does not appear to be a cost-effective or viable option for future noise mitigation.

APPENDIX A FIGURES

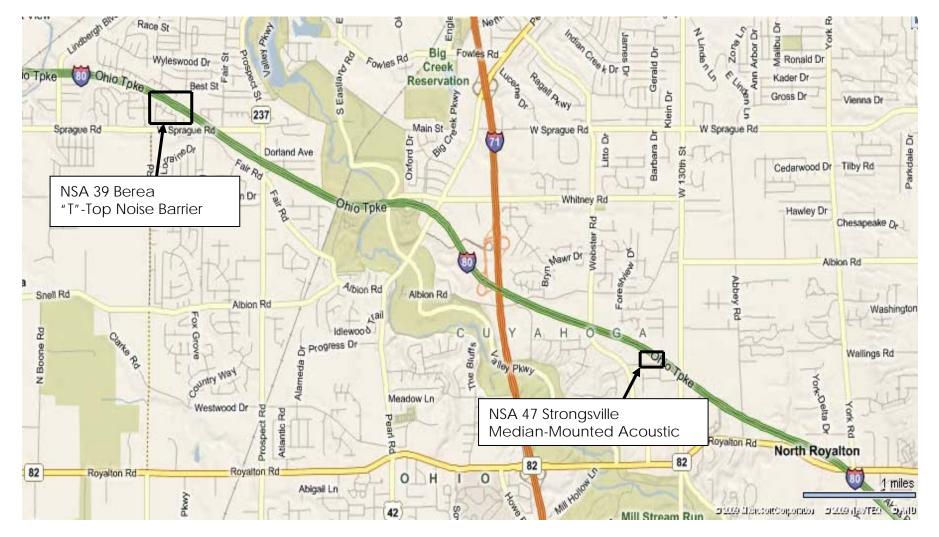


Figure 1 Pilot Program Locations

Figure 2 "T"-Top Noise Barrier Wall Noise Receptor Locations

Figure 3 Median-Mounted Acoustic Panels Noise Receptor Locations

APPENDIX B FIELD MEASURED NOISE LEVELS "T"-TOP NOISE BARRIER WALL

Pre-Construction Noise Monitoring

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		
Comments:	Location 1		

Group 1 Test 2

~

Test Started: Test Ended: Run Time:	5/28/2009 8:45:46 AN 5/28/2009 9:07:26 AN 00:21:39								
		Measuring Parameters							
Range: Threshold:			Weighting: Exchange Ra	A ate:	3 dB		Time Constant: Peak Weighting:		
				Summary					
Peak Level:	88.2 dB, 5/28/2009 8:49	9:09AM							
Max Level:	66.9 dB, 5/28/2009 8:49	9:08AM							
Min Level:	51.6 dB, 5/28/2009 9:52	2:49AM							
Overload:	No. 5 Section Control and a control of the								
LEO.	0.00%	CEL (2).		THA	40.2 JD	TAUDIC	7() 10		
LEQ:	63.3 dB	SEL(3):	92.8 dB	TWA:	48.3 dB	TAKM5:	76.3 dB		
LDN:	63.3 dB	CNEL:	63.3 dB	Pa2Sec:	(.8			
L5:	67.0 dB	L10:	64.0 dB	L50:	57.3 dB	L90:	51.6 dB		

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		

Comments: Location 2

Group 1 Test 2

Test Started:	5/28/2009 9:12:46	AM						
Test Ended:	5/28/2009 9:32:56	AM						
Run Time:	00:20:10							
			M	easuring Para	imeters			
Range:	60 - 120 dB	60 - 120 dB		А		Time Constant:		Fast
Threshold:	Off		Exchange F	Rate:	3 dB	Peak Weigh	iting:	С
				Summary	7			
Peak Level:	98.9 dB, 5/28/2009	9:13:09AM						
Max Level:	76.6 dB, 5/28/2009	9:16:51AM						
Min Level:	51.6 dB, 5/28/2009	9:32:49AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	98.3 dB	TWA:	53.9 dB	TAKM5:	71.9 dB	
	67.6 dB							
LDN:	67.6 dB	CNEL:	67.6 dB	Pa2Sec:	2.7			
L5:	72.3 dB	L10:	70.3 dB	L50:	64.8 dB	L90:	60.4 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		
Comments:	Location 3		

Group 1 Test 3

Test Started: Test Ended: Run Time:	5/28/2009 9:41:06 AM 5/28/2009 9:59:00 AM 00:17:54							
		Measuring Parameters						
Range: Threshold:			Weighting: Exchange Ra		3 dB	Time Constant: Peak Weighting:		Fast C
				Summary				
Peak Level:	102.8 dB, 5/28/2009 9:	50:29AM						
Max Level: Min Level: Overload:	84.9 dB, 5/28/2009 9:52 51.6 dB, 5/28/2009 9:42 0.00%							
LEQ:	71.3 dB	SEL(3):	102.0 dB	TWA:	57.5 dB	TAKM5:	75.9 dB	
LDN: L5:	71.3 dB 72.3 dB	CNEL: L10:	71.3 dB 75.9 dB	Pa2Sec: L50:	6.3 67.9 dB	L90:	61.0 dB	

2900 Integrating/Logging Sound Level Meter

,

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		
Comments:	Locations 4 and 5		

Group 1 Test 4

5/28/2009 9:41:06 AM							
5/28/2009 10:01:10 AM	Ľ						
0:20:04							
		Me	asuring Para	meters			
60 - 120 dB		Weighting:	ng: A		Time Constant:		Fast
Off		Exchange R	ate:	3 dB	Peak Weight	ing:	С
			Summary				
103.4 dB, 5/28/2009 9:5	57:26AM						
86.5 dB, 5/28/2009 9:47	7:01AM						
54.0 dB, 5/28/2009 9:53	3:17AM						
0.00%							
	SEL(3):	104.8 dB	TWA:	60.4 dB	TAKM5:	78.1 dB	
74.1 dB							
74.1 dB	CNEL:	74.1 dB	Pa2Sec:	12.2			
80.2 dB	L10:	78.8 dB	L50:	70.6dB	L90:	62.7 dB	
	5/28/2009 10:01:10 AM 0:20:04 60 - 120 dB Off 103.4 dB, 5/28/2009 9:4' 54.0 dB, 5/28/2009 9:5' 0.00% 74.1 dB 74.1 dB	5/28/2009 10:01:10 AM 0:20:04 60 - 120 dB Off 103.4 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:47:01AM 54.0 dB, 5/28/2009 9:53:17AM 0.00% SEL(3): 74.1 dB 74.1 dB CNEL:	5/28/2009 10:01:10 AM 0:20:04 Me 60 - 120 dB Off Weighting: Exchange R 103.4 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:53:17AM 0.00% SEL(3): 104.8 dB 74.1 dB 74.1 dB 74.1 dB 74.1 dB	5/28/2009 10:01:10 AM 0:20:04 Measuring Parat 60 - 120 dB Off Weighting: A Exchange Rate: Summary 103.4 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:57:26AM 86.5 dB, 5/28/2009 9:53:17AM 0.00% SEL(3): 104.8 dB TWA: 74.1 dB 74.1 dB CNEL: 74.1 dB Pa2Sec:	5/28/2009 10:01:10 AM 0:20:04 60 - 120 dB Off	5/28/2009 10:01:10 AM 0:20:04 Measuring Parameters 60 - 120 dB Off The Constance of the C	5/28/2009 10:01:10 AM 0:20:04 Measuring Parameters 60 - 120 dB Off B B B B B B B B B B B B B B B B B B

Comments:

.

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		
Comments:	Location 6		

Group 1 Test 5

5/28/2009 10:03:19 AM	Ē.						
5/28/2009 10:23:23 AM	Ľ.						
0:20:04							
		Ivie	asuring Paral	neters			
60 - 120 dB	Weighting:	A		Time Constant:		Fast	
Off			ate:	3 dB	Peak Weight	ing:	С
			Summary				
100.0 dB, 5/28/2009 10	:14:19AM						
78.6 dB, 5/28/2009 10:2	21:41AM						
51.8 dB, 5/28/2009 10:1	8:02AM						
0.00%							
	SEL(3):	98.7 dB	TWA:	54.2 dB	TAKM5:	71.4 dB	
68.0 dB							
68.0 dB	CNEL:	68.0 dB	Pa2Sec:	2.9			
73.1 dB	L10:	72.2 dB	L50:	65.4 dB	L90:	58.9 dB	
	5/28/2009 10:23:23 AM 0:20:04 60 - 120 dB Off 100.0 dB, 5/28/2009 10 78.6 dB, 5/28/2009 10:2 51.8 dB, 5/28/2009 10:2 51.8 dB, 5/28/2009 10:1 0.00% 68.0 dB 68.0 dB	60 - 120 dB Off 100.0 dB, 5/28/2009 10:14:19AM 78.6 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM 0.00% SEL(3): 68.0 dB 68.0 dB CNEL:	5/28/2009 10:23:23 AM 0:20:04 Me 60 - 120 dB Off Weighting: Exchange Ra 100.0 dB, 5/28/2009 10:14:19AM 78.6 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM 0.00% SEL(3): 98.7 dB 68.0 dB 68.0 dB 68.0 dB 68.0 dB	5/28/2009 10:23:23 AM 0:20:04 Measuring Parat 60 - 120 dB Off Weighting: A Exchange Rate: Summary 100.0 dB, 5/28/2009 10:14:19AM 78.6 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM 0.00% SEL(3): 98.7 dB TWA: 68.0 dB 68.0 dB CNEL: 68.0 dB Pa2Sec:	5/28/2009 10:23:23 AM 0:20:04 Measuring Parameters 60 - 120 dB Off & Weighting: A Exchange Rate: 3 dB Summary 100.0 dB, 5/28/2009 10:14:19AM 78.6 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM 0.00% SEL(3): 98.7 dB TWA: 54.2 dB 68.0 dB 68.	5/28/2009 10:23:23 AM 0:20:04 Measuring Parameters 60 - 120 dB Off B Charles B Summary 100.0 dB, 5/28/2009 10:14:19AM 78.6 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM 0.00% SEL(3): 98.7 dB TWA: 54.2 dB TAKM5: 68.0 dB 68.0 dB 68.0 dB Pa2Sec: 2.9	S/28/2009 10:23:23 AM Measuring Parameters Meighting: A Exchange Rate: Time Constant: Peak Weighting: Summary 100.0 dB, 5/28/2009 10:14:19AM S128 / 2009 10:21:41AM 78.6 dB, 5/28/2009 10:21:41AM S128 / 2009 10:21:41AM 51.8 dB, 5/28/2009 10:18:02AM SEL(3): 98.7 dB TWA: 54.2 dB TAKM5: 71.4 dB 68.0 dB CNEL: 68.0 dB Pa2Sec: 2.9 10.00

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Pre Construction Noise Monitoring		
Comments:	Location 7		
		Group 1 Test 6	
Test Started: Test Ended:	5/28/2009 10:28:07 AM 5/28/2009 10:48:08 AM		
Run Time:	00:20:01		

Measuring Parameters

60 - 120 dB Off		Weighting: Exchange R	A ate:	3 dB			Fast C
			Summary				
89.7 dB, 5/28/2009 10	:47:05AM						
51.6 dB, 5/28/2009 10	:28:09AM						
0.00%							
	SEL(3):	87.6 dB	TWA:	43.2 dB	TAKM5:	58.7 dB	
56.4 dB							
56.4 dB	CNEL:	56.4 dB	Pa2Sec:	0.2			
60.4 dB	L10:	59.4 dB	L50:	55.2 dB	L90:	51.6 dB	
	Off 89.7 dB, 5/28/2009 10 66.8 dB, 5/28/2009 10 51.6 dB, 5/28/2009 10 0.00% 56.4 dB 56.4 dB	Off 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM 51.6 dB, 5/28/2009 10:28:09AM 0.00% SEL(3): 56.4 dB 56.4 dB CNEL:	Off Exchange R 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM 51.6 dB, 5/28/2009 10:28:09AM 0.00% SEL(3): 87.6 dB 56.4 dB 56.4 dB CNEL: 56.4 dB	Off Exchange Rate: Summary 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM 51.6 dB, 5/28/2009 10:28:09AM 0.00% SEL(3): 87.6 dB TWA: 56.4 dB 56.4 dB CNEL: 56.4 dB Pa2Sec:	Off Exchange Rate: 3 dB Summary 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM - 51.6 dB, 5/28/2009 10:28:09AM - 0.00% - SEL(3): 87.6 dB TWA: 56.4 dB - 56.4 dB CNEL: 56.4 dB	Off Exchange Rate: 3 dB Peak Weight Summary 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM 51.6 dB, 5/28/2009 10:28:09AM 0.00% 0.00% SEL(3): 87.6 dB TWA: 43.2 dB TAKM5: 56.4 dB 56.4 dB Pa2Sec: 0.2	Off Exchange Rate: 3 dB Peak Weighting: Summary 89.7 dB, 5/28/2009 10:47:05AM 66.8 dB, 5/28/2009 10:36:07AM - - 66.8 dB, 5/28/2009 10:28:09AM - - 0.00% - - 56.4 dB SEL(3): 87.6 dB TWA: 43.2 dB TAKM5: 58.7 dB 56.4 dB CNEL: 56.4 dB Pa2Sec: 0.2 -

Comments:

•

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4		Serial Num	ber:	CDE06003	9		
Name:	CMCox							
Company:	TranSystems for the Ohio Turnpike	ranSystems for the Ohio Turnpike Commission						
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wal Pre Construction Noise Monitoring	ISA 39 "T"-Top Noise Barrier Wall Pilot Program re Construction Noise Monitoring						
Comments:	Location 8	Location 8						
	Group 1 Test 7							
Test Started: Test Ended: Run Time:	5/28/2009 10:45:27 AM 5/28/2009 11:05:28 AM 00:20:01							
		M	easuring Para	imeters				
Range: Threshold:	60 - 120 dB Off	Weighting: Exchange F		3 dB	Time Const Peak Weigh		Fast C	
			Summary					
Peak Level:	94.9 dB, 5/28/2009 10:50:41AM							
Max Level: Min Level: Overload:	69.9 dB, 5/28/2009 10:50:41AM 51.6 dB, 5/28/2009 10:46:40AM							
LEQ:	0.00% SEL(3):	89.6 dB	TWA:	45.1 dB	TAKM5:	62.6 dB		
LLQ.	59.8 dB 59.8 dB CNEL:	59.8 dB	Pa2Sec:	0.4	Tricing.	52.0 dD		
LDN: L5:	64.4 dB L10:	63.2 dB	L50:	0.4 58.3 dB	L90:	53.1 dB		

Post-Construction Noise Monitoring Noise Barrier Wall Only

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 1		

Group 1 Test 1

Test Started: Test Ended: Run Time:	9/1/2009 8:15:50 A) 9/1/2009 8:36:00 A) 00:20:10							
			Ma	easuring Para	meters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange R	A ate:	3 dB	Time Consta Peak Weigh		Fast C
9				Summary				
Peak Level:	93.0 dB, 9/1/2009	8:30:16AM						
Max Level:	73.7 dB, 9/1/2009	8:27:58AM						
Min Level:	51.6 dB, 9/1/2009 8	8:27:19AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	92.9 dB	TWA:	48.5 dB	TAKM5:	65.0 dB	
	62.2 dB							
LDN:	62.2 dB	CNEL:	62.2 dB	Pa2Sec:	0.8			
L5:	66.6 dB	L10:	65.5 dB	L50:	60.9 dB	L90:	55.9 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 2		

Group 1 Test 2

Test Started:	9/1/2009 8:42:21 AN	1						
Test Ended:	9/1/2009 9:02:31 AN	1						
Run Time:	00:20:10							
	Measuring Parameters							
Range:	60 - 120 dB		Weighting:	А		Time Consta	int:	Fast
Threshold:	Off		Exchange R	ate:	3 dB	Peak Weight	ing:	С
				Summary				
Peak Level:	96.8 dB, 9/1/2009 9	:13:22AM						
Max Level:	79.7 dB, 9/1/2009 9	:13:21AM						
Min Level:	51.6 dB, 9/1/2009 8	:47:27AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	96.5 dB	TWA:	52.1 dB	TAKM5:	69.3 dB	
	64.8 dB							
LDN:	64.8 dB	CNEL:	64.8 dB	Pa2Sec:	1.6			
L5:	70.7 dB	L10:	69.5 dB	L50:	63.7 dB	L90:	58.0 dB	
L5:	70.7 dB	L10:	69.5 dB	L50:	63.7 dB	L90:	58.0 dB	

2900 Integrating/Logging Sound Level Meter

•

FW Version:	02.4	Serial Number:	CDE060039
Name:	СМСох		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation	n	
Comments:	Location 3		

Group 1 Test 3

Test Started: Test Ended: Run Time:	9/1/2009 9:17:03 AM 9/1/2009 9:37:07 AM 0:20:04							
		Measuring Parameters						
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange Ra	A ite:	3 dB	Time Constar Peak Weighti	17 C. 17	Fast C
				Summary				
Peak Level:	94.9 dB, 9/1/2009 9:1	9:30AM						
Max Level:	77.1 dB, 9/1/2009 9:1	9:41AM						
Min Level:	52.6 dB, 9/1/2009 9:2	0:57AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	96.3 dB	TWA:	51.8 dB	TAKM5:	70.0 dB	
	66.1 dB							
LDN:	66.1 dB	CNEL:	66.1 dB	Pa2Sec:	1.7			
L5:	71.4 dB	L10:	70.3 dB	L50:	65.3 dB	L90:	59.9 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 4		

Group 1 Test 4

Test Started: Test Ended: Run Time:	9/1/2009 9:45:59 AM 9/1/2009 10:05:00 AM 00:20:01								
		Measuring Parameters							
Range: Threshold:	. 27		Weighting: A Exchange Rate:		3 dB	Time Constant: Peak Weighting:		Fast C	
				Summary					
Peak Level:	100.3 dB, 9/1/2009 9:4	3:01AM							
Max Level:	78.0 dB, 9/1/2009 9:55	:36AM							
Min Level:	53.2 dB, 9/1/2009 10:0	0:43AM							
Overload:									
	0.00%								
LEQ:		SEL(3):	96.6 dB	TWA:	52.2 dB	TAKM5:	69.6 dB		
	68.9 dB								
LDN:	68.9 dB	CNEL:	68.9 dB	Pa2Sec:	1.8				
L5:	72.4 dB	L10:	69.8 dB	L50:	63.7 dB	L90:	58.7 dB		

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	СМСох		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 5		

Group 1 Test 5

Test Started:	9/1/2009 10:09:29 AM					
Test Ended:	9/1/2009 10:24:38 AM					
Run Time:	00:15:08					
		Measuring Para	meters			
Range:	60 - 120 dB	Weighting: A		Time Consta	nt:	Fast
Threshold:	Off	Exchange Rate:	3 dB	Peak Weight	ing:	С
		Summary				
Peak Level:	103.4 dB, 9/1/2009 10:16:45AM					
Max Level:	83.9 dB, 9/1/2009 10:14:31AM					
Min Level:	54.3 dB, 9/1/2009 10:14:21AM					
Overload:						
	0.00%					
LEQ:	SEL(3):	101.2 dB TWA:	56.8 dB	TAKM5:	76.7 dB	
	73.7 dB					
LDN:	73.7 dB CNEL:	73.7 dB Pa2Sec:	5.3			
L5:	78.3 dB L10:	76.6 dB L50:	67.5 dB	L90:	61.3 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 6 Park Control Location-This Location Unaffected by the N	pise Barrier	

Group 1 Test 6

Test Started:	9/1/2009 10:27:56 AM							
Test Ended:	9/1/2009 10:42:57 AM							
Run Time:	00:15:01							
				120				
			Mea	isuring Paran	neters			
Range:	60 - 120 dB		Weighting:	A		Time Consta	nt:	Fast
Threshold:	Off		Exchange Ra	te:	3 dB	Peak Weight	ing:	С
				Summary				
				Summing				
Peak Level:	103.2 dB, 9/1/2009 10:	30:17AM						
10x01 10 1 0								
Max Level:		3:51AM						
Min Level:	54.9 dB, 9/1/2009 10:3	1:22AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	97.0 dB	TWA:	52.5 dB	TAKM5:	70.4 dB	
	69.5 dB							
LDN:	69.5 dB	CNEL:	69.5 dB	Pa2Sec:	2.0			
L5:	73.1 dB	L10:	72.2 dB	L50:	65.6 dB	L90:	60.7 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 7		

Group 1 Test 7

Test Started:	9/1/2009 10:46:12 A	М						
Test Ended:	9/1/2009 11:06:13 A	М						
Run Time:	00:20:01							
			Me	asuring Parar	neters			
Range:	60 - 120 dB		Weighting:	A		Time Consta	nt:	Fast
Threshold:	Off		Exchange Ra	ite:	3 dB	Peak Weight	ing:	С
				Summary				
Peak Level:	88.9 dB, 9/1/2009 1	0:50:58AM						
Max Level:	71.1 dB, 9/1/2009 1	0:50:57AM						
Min Level:	53.3 dB, 9/1/2009 11	:05:09AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	87.1 dB	TWA:	41.2 dB	TAKM5:	58.5 dB	
	53.9 dB							
LDN:	53.9 dB	CNEL:	53.9 dB	Pa2Sec:		0.1		
L5:	57.5 dB	L10:	56.4 dB	L50:	52.9 dB	L90:	51.6 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post Barrier Wall Installation		
Comments:	Location 8		

Group 1 Test 8

Test Started:	9/1/2009 11:23:07 AN	1						
Test Ended:	9/1/2009 11:43:07 AM	4						
Run Time:	00:20:00							
			Me	asuring Parai	neters			
Range:	60 - 120 dB		Weighting:	A		Time Consta	nt:	Fast
Threshold:	Off		Exchange Ra	ite:	3 dB	Peak Weight	ing:	С
				C				
				Summary				
Peak Level:	92.9 dB, 9/1/2009 11:3	7:02AM						
Max Level:	66.5 dB, 9/1/2009 11:43	3:04AM						
Min Level:	52.0 dB, 9/1/2009 11:39	9:04AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	88.5 dB	TWA:	44.0 dB	TAKM5:	60.3 dB	
	56.7 dB							
LDN:	56.7 dB	CNEL:	56.7 dB	Pa2Sec:	0.3			
L5:	60.9 dB	L10:	60.3 dB	L50:	57.1 dB	L90:	54.1 dB	

Post-Construction Noise Monitoring Noise Barrier Wall with "T"-Top

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 1		

Group 1 Test 1

10/8/2009 9:14:12 AM							
10/8/2009 9:30:43 AM							
00:16:31							
		Me	asuring Parai	neters			
60 - 120 dB		Weighting:	А		Time Consta	nt:	Fast
Off				3 dB	Peak Weight	ing:	С
			Summary				
92.8 dB, 10/8/2009 9:26	5:04AM						
73.1 dB, 10/8/2009 9:20):04AM						
51.6 dB, 10/8/2009 9:23	:35AM						
0.00%							
	SEL(3):	92.4 dB	TWA:	48.0 dB	TAKM5:	65.1 dB	
61.7 dB							
61.7 dB	CNEL:	61.7 dB	Pa2Sec:	0.7			
66.5 dB	L10:	65.7 dB	L50:	61.4 dB	L90:	56.7 dB	
	10/8/2009 9:30:43 AM 00:16:31 60 - 120 dB Off 92.8 dB, 10/8/2009 9:26 73.1 dB, 10/8/2009 9:22 51.6 dB, 10/8/2009 9:23 0.00% 61.7 dB 61.7 dB	10/8/2009 9:30:43 AM 00:16:31 60 - 120 dB Off 92.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 61.7 dB 61.7 dB 61.7 dB CNEL:	10/8/2009 9:30:43 AM 00:16:31 Me 60 - 120 dB Off Weighting: Exchange Ra 92.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 92.4 dB 61.7 dB 61.7 dB 61.7 dB	10/8/2009 9:30:43 AM 00:16:31 Measuring Paran 60 - 120 dB Off Weighting: A Exchange Rate: Summary 92.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 92.4 dB TWA: 61.7 dB 61.7 dB CNEL: 61.7 dB Pa2Sec:	10/8/2009 9:30:43 AM 00:16:31 Measuring Parameters 60 - 120 dB Off Weighting: A Exchange Rate: 3 dB Summary 92.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 92.4 dB TWA: 48.0 dB 61.7 dB 61.7 dB Pa2Sec: 0.7	10/8/2009 9:30:43 AM 00:16:31 Measuring Parameters 60 - 120 dB Off B Conference Bare: 3 dB Summary 92.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 92.4 dB TWA: 48.0 dB TAKM5: 61.7 dB 61.7 dB 61.7 dB 61.7 dB CNEL: 61.7 dB Pa2Sec: 0.7	10/8/2009 9:30:43 AM 00:16:31 Measuring Parameters 60 - 120 dB Off Peak Weighting: A Exchange Rate: 3 dB Time Constant: Peak Weighting: P2.8 dB, 10/8/2009 9:26:04AM 73.1 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:20:04AM 51.6 dB, 10/8/2009 9:23:35AM 0.00% SEL(3): 92.4 dB TWA: 48.0 dB TAKM5: 65.1 dB 61.7 dB CNEL: 61.7 dB Pa2Sec: 0.7

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 2		

Group 1 Test 2

Fast
С
dB
dB

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program		
Description:	Post "T"-Top Installation		
3 . (Ch)			
Comments:	Location 3		
		Group 1 Test 3	
		1 	
Test Started:	10/8/2009 10:12:04 AM		
Test Ended:	10/8/2009 10:32:14 AM		
Run Time:	00:20:09		

Test Started:	10/8/2009 10:12:04 AM					
Test Ended:	10/8/2009 10:32:14 AM					
Run Time:	00:20:09					
		Measuring Para	meters			
Range:	60 - 120 dB	Weighting: A		Time Consta	int:	Fast
Threshold:	Off	Exchange Rate:	3 dB	Peak Weight	ting:	С
		Summary	7			
Peak Level:	97.8 dB, 10/8/2009 10:12:18AM					
Max Level:	72.9 dB, 10/8/2009 10:12:17AM					
Min Level:	51.4 dB, 10/8/2009 10:24:11AM					
Overload:						
	0.00%					
LEQ:	SEL(3):	95.7 dB TWA:	51.1 dB	TAKM5:	67.0 dB	
	65.0 dB					
LDN:	65.0 dB CNEL:	64.9 dB Pa2Sec:	2.0			
L5:	69.2 dB L10:	68.1 dB L50:	63.8 dB	L90:	59.7 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 4		

Group 1 Test 4

Test Started:	10/8/2009 10:48:53 Al	M						
Test Ended:	10/8/2009 11:08:54 Al	М						
Run Time:	00:20:01							
			Me	asuring Para	meters			
Range:	60 - 120 dB		Weighting:	A		Time Consta	int:	Fast
Threshold:	Off		Exchange R		3 dB	Peak Weigh		C
				Summary	,			
Peak Level:	99.4 dB, 10/8/2009 11:04:13	3AM						
Max Level:	77.8 dB, 10/8/2009 10:57:0	1AM						
Min Level:	53.4 dB, 10/8/2009 10:52:0	1AM						
Overload:								
	0.00%							
LEQ:		SEL(3):	98.8 dB	TWA:	65.2 dB	TAKM5:	70.7 dB	
	67.7 dB							
LDN:	67.7dB	CNEL:	67.7 dB	Pa2Sec:	2			
L5:	71.9 dB	L10:	70.7 dB	L50:	65.3 dB	L90:	60.6 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 5		

Group 1 Test 5

Fast C

Test Started:	10/8/2009 11:09:28 AM					2
Test Ended:	10/8/2009 11:29:30 AM					
Run Time:	00:20:02					
		Mea	suring Param	ieters		
Range:	60 - 120 dB	Weighting:	A		Time Constan	nt:
Threshold:	Off	Exchange Ra		3 dB	Peak Weighti	
		Enteringeria		5 015	r cuit it eight	iig.
			Summary			
Peak Level:	98.7 dB, 10/8/2009 11:24:33AN	М				
Max Level:	85.4 dB, 10/8/2009 11:15:46AM	М				
Min Level:	57.2 dB, 10/8/2009 11:22:13AM	М				
Overload:						
	0.00%					
LEQ:	SEL	_(3): 104.5 dB	TWA:	60.0dB	TAKM5:	78.9 dB
	73.8 dB					
LDN:	73.8 dB CNI	EL: 73.8 dB	Pa2Sec:	2.3		
L5:	80.1 dB L10	: 78.3 dB	L50:	70.0 dB	L90:	64.0 dB

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 6		

Group 1 Test 6

Test Started: Test Ended: Run Time:	10/8/2009 11:32:08 AM 10/8/2009 11:52:09 AM 00:20:00							
			Me	asuring Parai	neters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange Ra	A ate:	3 dB	Time Consta Peak Weight		Fast C
				Summary				
Peak Level:	99.5 dB, 10/8/2009 11:48	:36AM						
Max Level:	78.9 dB, 10/8/2009 11:45	:10AM						
Min Level:	52.8 dB, 10/8/2009 11:44	:12AM						
Overload:								
	0.00%		and an a				110-1300-14500 - 252,005	
LEQ:	(0 - 1 -	SEL(3):	100.	5 TWA:	56.1 dB	TAKM5:	71.8 dB	
	69.7 dB				272			
LDN:	69.7 dB	CNEL:	69.7 dB	Pa2Sec:	3.6			
L5:	73.8 dB	L10:	71.5 dB	L50:	68.9 dB	L90:	66.4 dB	

7

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 7		

Group 1 Test 7

Test Started: Test Ended: Run Time:	10/8/2009 12:01:06 Pl 10/8/2009 12:21:07 Pl 00:20:01									
		Measuring Parameters								
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange R	A ate:	3 dB	Time Consta Peak Weigh		Fast C	Ŧ	
				Summary						
Peak Level:	95.3 dB, 10/8/2009 12:1	10:35AM								
Max Level: Min Level: Overload:	72.3 dB, 10/8/2009 12:0 49.6 dB, 10/8/2009 12:2									
LEQ:	0.00% 53.7 dB	SEL(3):	82.2 dB	TWA:	37.8 dB	TAKM5:	56.9 dB			
LDN: L5:	53.7 dB 55.1 dB	CNEL: L10:	53.7 dB 53.6 dB	Pa2Sec: L50:	0.3 51.3 dB	L90:	50.0 dB			

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commission		
Work Area: Description:	NSA 39 "T"-Top Noise Barrier Wall Pilot Program Post "T"-Top Installation		
Comments:	Location 8		

Group 1 Test 8

Test Started:	10/8/2009 12:58:21 PM							
Test Ended:	10/8/2009 1:18:21 PM							
Run Time:	00:20:00							
			Me	asuring Parai	neters			
Range:	60 - 120 dB		Weighting:	A		Time Consta	nt:	Fast
Threshold:	Off		Exchange Ra	ate:	3 dB	Peak Weight	ing:	C
				Summary				
				Summary				
Peak Level:	100.5 dB, 10/8/2009 1:05:	01PM						
Max Level:	72.9 dB, 10/8/2009 1:04:4	3PM						
Min Level:	51.9 dB, 10/8/2009 12:58:	43PM						
Overload:								
	0.00%							
LEQ:		SEL(3):	86.2 dB	TWA:	41.8 dB	TAKM5:	58.6 dB	
	56.4 dB							
LDN:	56.4 dB	CNEL:	56.4 dB	Pa2Sec:	0.4			
L5:	59.5 dB	L10:	58.4 dB	L50:	55.9 dB	L90:	54.2 dB	

APPENDIX C FIELD MEASURED NOISE LEVELS MEDIAN-MOUNTED ACOUSTIC PANELS

Pre-Construction Noise Monitoring

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Pre-Construction Noise Measurement	
Comments:	Location 1	

Group 1 Test 1

Test Started: Test Ended: Run Time:	5/27/2009 9:15:02 AM 5/27/2009 9:35:03 AM 00:20:01									
	Measuring Parameters									
Range: Threshold:	60 - 120 dB Off	•	Weighting: Exchange R	A ate:	3 dB	Time Const Peak Weigh		Fast C		
				Summary	<i>,</i>					
Peak Level:	99.8 dB, 5/27/2009 9:29:0	0AM								
Max Level: Min Level: Overload:	77.9 dB, 5/29/2009 9:31:3 55.9 dB, 5/29/2009 9:20:4									
LEQ:	0.00% 67.3 dB	SEL(3):	97.9 dB	TWA:	53.5 dB	TAKM5:	70.7 dB			
LDN: L5:	67.3 dB 72.5 dB	CNEL: L10:	67.3 dB 71.3 dB	Pa2Sec: L50:	1.9 65.0 dB	L90:	60.1 dB			

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Versio	on: 02.4		Serial Number:
Name:	CMCox		
Company:	TranSys	tems for the Ohio Turnpike Comm	ision
Work Area Description		Median-Mounted Acoustic Panels struction Noise Measurement	
Comments	: Location	n 2	

Group 1 Test 2

Test Started: Test Ended: Run Time:	5/27/2009 9:37:02 AM 5/27/2009 9:57:03 AM 00:20:01							
			Me	easuring Para	meters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange R	A ate:	3 dB	Time Consta Peak Weight		Fast C
				Summary				
Peak Level:	99.7 dB, 5/27/2009 9:52:0	0AM						
Max Level:	83.7 dB, 5/27/2009 9:52:3	8PM						
Min Level:	55.3 dB, 5/27/2009 9:53:4	9PM						
Overload:	0.000/							
LEQ:	0.00% 71.4 dB	SEL(3):	102 dB	TWA:	57.6 dB	TAKM5:	74.5 dB	
LDN:	71.4 dB	CNEL:	71.4 dB	Pa2Sec:	6.4			
L5:	76.9 dB	L10:	75.5 dB	L50:	68.8 dB	L90:	63.2 dB	

2900 Integrating/Logging Sound Level Meter

FW Version:	02.4	Serial Number:	CDE060039
Name:	CMCox		
Company:	TranSystems for the Ohio Turnpike Commision		
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Pre-Construction Noise Measurement		
Comments:	Location 3		

Group 1 Test 3

Test Started: Test Ended: Run Time:	5/27/2009 9:00:19 AM 5/27/2009 10:20:20 AM 00:20:01							
			Me	asuring Para	meters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange Ra	A ate:	3 dB	Time Consta Peak Weigh		Fast C
				Summary				
Peak Level:	97.8 dB, 5/27/2009 9:03:00	0AM						
Max Level:	72.7 dB, 5/27/2009 9:16:3	8PM						
Min Level:	55.0 dB, 5/27/2009 9:11:49	9PM						
Overload:								
	0.00%)	
LEQ:		SEL(3):	95.6 dB	TWA:	51.1 Db	TAKM5:	67.0 dB	
	64.9 dB							
LDN:	64.9 dB	CNEL:	64.9 dB	Pa2Sec:	1.4			
L5:	69.0 dB	L10:	68.1 dB	L50:	63.8 dB	L90:	59.7 dB	

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Pre-Construction Noise Measurement	
Comments:	Location 4	

Group 1 Test 4

Test Started: Test Ended: Run Time:	5/27/2009 10:25:47 AM 5/27/2009 10:45:48 AM 00:20:01							
			M	easuring Par	ameters			
Range: Threshold:				Weighting: A Exchange Rate: 3 dB		Time Constant: Peak Weighting:		Fast C
				Summar	у			
Peak Level:	91.2 dB, 5/27/2009 10:30	6:00AM						
Max Level: Min Level: Overload:	70.3 dB, 5/27/2009 10:4. 52.1 dB, 5/27/2009 10:44							
Overload.	0.00%							
LEQ:	59.7 dB	SEL(3):	90.3 dB	TWA:	45.9 dB	TAKM5:	61.7 dB	
LDN: L5:	59.7 dB 63.2 dB	CNEL: L10:	59.7 dB 62.2 dB	Pa2Sec: L50:	0.4 58.8 dB	L90:	56.3 dB	

Post-Construction Noise Monitoring

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Post-Construction Noise Measurement	
Comments:	Location 1	

Group 1 Test 1

Test Started: Test Ended: Run Time:	10/21/2009 11:41:02 AM 10/21/2009 12:01:03 PM 00:20:01							
			Me	asuring Para	meters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange Ra	A ate:	3 dB	Time Consta Peak Weight		Fast C
				Summary				
Peak Level:	101.3 dB, 10/21/2009 11:4	9:00AM						
Max Level:	77.9 dB, 10/21/2009 11:59	:38AM						
Min Level:	52.3 dB, 10/21/2009 11:43	:49AM						
Overload:	0.00%							
LEQ:	0.0078	SEL(3):	95.8 dB	TWA:	52.0 dB	TAKM5:	70.0 dB	
	65.1 dB							
LDN:	65.1 dB	CNEL:	65.1 dB	Pa2Sec:	1.9			
L5:	70.6 dB	L10:	69.2 dB	L50:	62.1 dB	L90:	55.3 dB	

Comments:

Page -1 of 1

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Post-Construction Noise Measurement	
Comments:	Location 2	

Group 1 Test 2

Test Started:	10/21/2009 12:06:44 PM							
Test Ended:	10/21/2009 12:26:44 PM							
Run Time:	00:20:00							
			Me	easuring Para	meters			
Range:	60 - 120 dB		Weighting:	А		Time Consta	ant	Fast
Threshold:	Off		Exchange R		3 dB	Peak Weigh		C
						r our moign	ung.	U
				Summary	a An			
Peak Level:	100.5 dB, 10/21/2009 12:	25:20PM						
Max Level:	83.3 dB, 10/21/2009 12:14	4:58PM						
Min Level:	52.9 dB, 10/21/2009 12:1	6:32PM						
Overload:								
	0.00%							
LEQ:		SEL(3):	101.7 dB	TWA:	57.3 dB	TAKM5:	74.9 dB	
	71.0 dB							
LDN:	71.0 dB	CNEL:	71.0 dB	Pa2Sec:	6.0			
L5:	76.5 dB	L10:	75.4 dB	L50:	67.9 dB	L90:	61.0 dB	

4

2900 Integrating/Logging Sound Level Meter

CDE060039

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Post-Construction Noise Measurement	
Comments:	Location 3	

10/21/2009 12:55:02 PM

Group 1 Test 3

10/21/2009 1:15:03 PM							
00:20:01							
		Me	asuring Para	meters			
60 - 120 dB		Weighting:	A		Time Consta	int:	Fast
Off		Exchange Ra	ate:	3 dB	Peak Weight	ting:	С
			Summary				
101.3 dB, 10/21/2009 12:5	9:00PM						
77.9 dB, 10/21/2009 12:55	:38PM						
52.3 dB, 10/21/2009 1:05:4	49PM						
0.00%							
	SEL(3):	90.5 dB	TWA:	46.1 dB	TAKM5:	68.0 dB	
62.9 dB							
62.9 dB	CNEL:	62.9 dB	Pa2Sec:	1.9			
68.0 dB	L10:	62.9 dB	L50:	56.2 dB	L90:	54.7 dB	
	00:20:01 60 - 120 dB Off 101.3 dB, 10/21/2009 12:5 52.3 dB, 10/21/2009 12:55 52.3 dB, 10/21/2009 1:05:2 0.00% 62.9 dB 62.9 dB	00:20:01 60 - 120 dB Off 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21/2009 1:05:49PM 0.00% SEL(3): 62.9 dB 62.9 dB CNEL:	00:20:01 Me 60 - 120 dB Off Weighting: Exchange Ra 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21/2009 1:05:49PM 0.00% SEL(3): 90.5 dB 62.9 dB 62.9 dB 62.9 dB 62.9 dB	00:20:01 Measuring Para 60 - 120 dB Off Weighting: A Exchange Rate: Summary 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21/2009 12:55 52.3 dB, 10/21/2009 12:55 dB, 10/21/2009 12:55	00:20:01 Measuring Parameters 60 - 120 dB Off Weighting: A Exchange Rate: 3 dB Summary 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21/2009 12:55 52.3 dB, 10/21/2009 12:55 52.3 dB, 1	00:20:01 Measuring Parameters 60 - 120 dB Off Weighting: A Exchange Rate: 3 dB Time Consta Peak Weight Summary 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB	00:20:01 Measuring Parameters 60 - 120 dB Off Weighting: A Exchange Rate: 3 dB Time Constant: Peak Weighting: 101.3 dB, 10/21/2009 12:59:00PM 77.9 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21 dB, 10/21/2009 12:55:38PM 52.3 dB, 10/21 dB, 10/21/2009 12

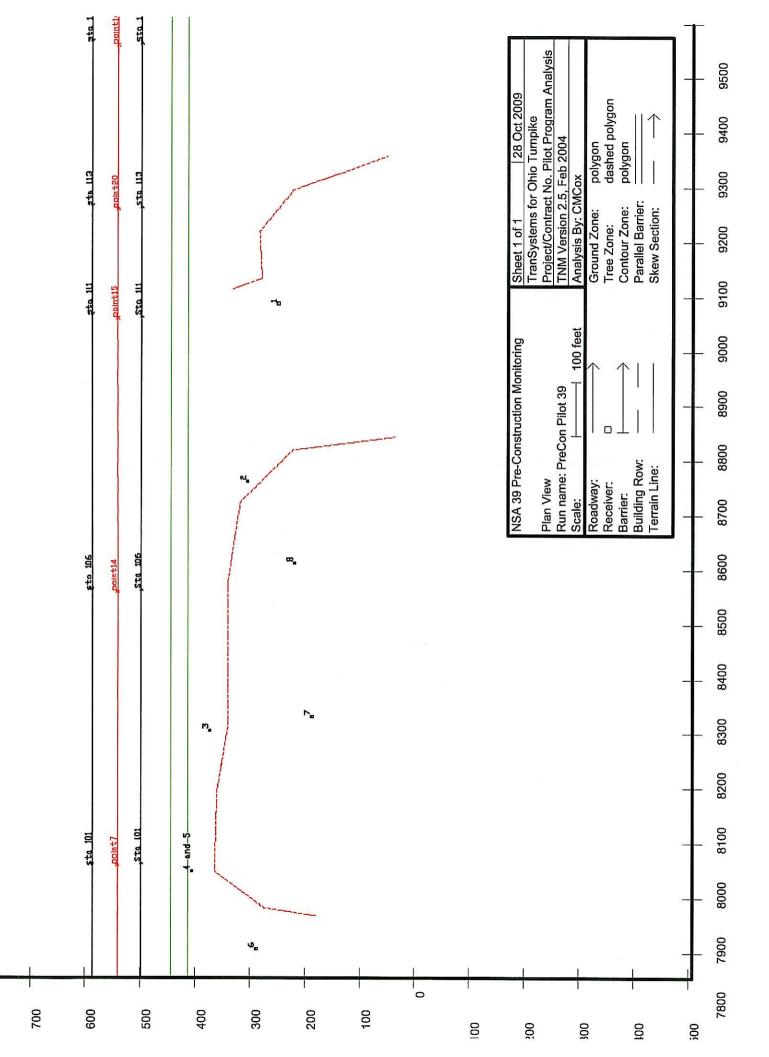
Comments:

Test Started:

Page -1 of 1

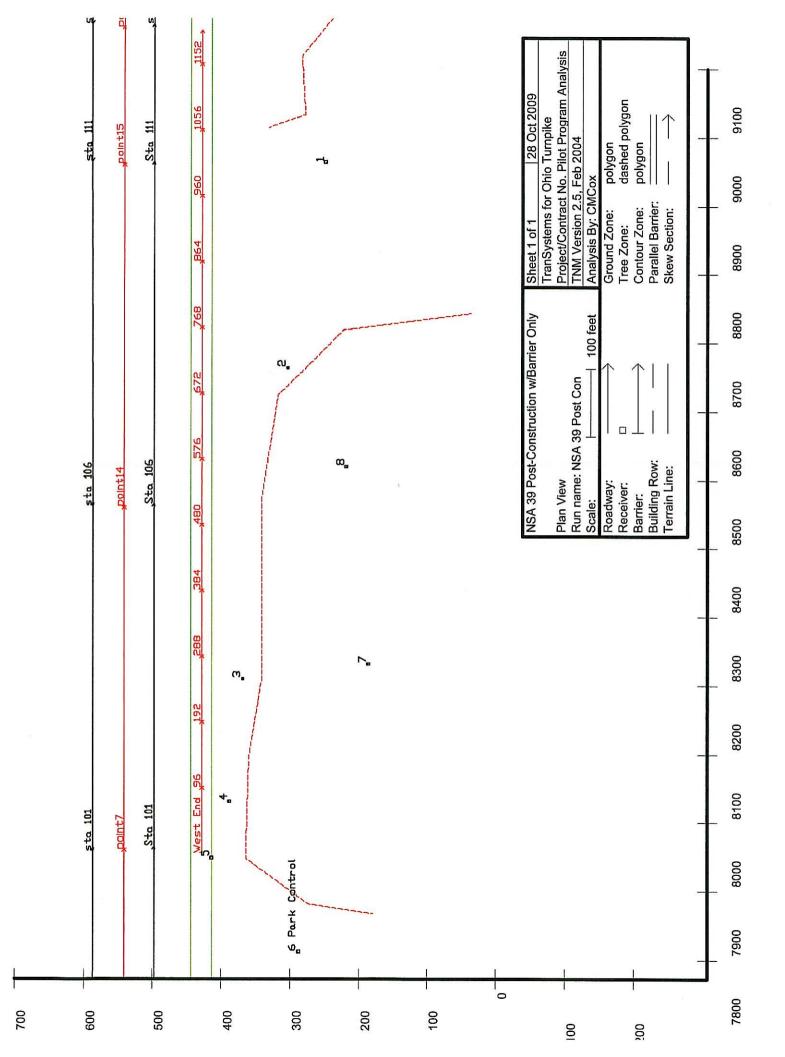
2900 Integrating/Logging Sound Level Meter

CDE060039


•

FW Version:	02.4	Serial Number:
Name:	CMCox	
Company:	TranSystems for the Ohio Turnpike Commision	
Work Area: Description:	NSA 47 Median-Mounted Acoustic Panels Post-Construction Noise Measurement	
Comments:	Location 4	

Group 1 Test 4


Test Started: Test Ended: Run Time:	10/21/2009 12:31:01 PM 10/21/2009 12:51:16 PM 00:20:14							
			Mea	suring Paran	ieters			
Range: Threshold:	60 - 120 dB Off		Weighting: Exchange Ra	A te:	3 dB	Time Constar Peak Weighti		Fast C
				Summary				
Peak Level:	96.7 dB, 10/21/2009 12:44	4:41PM						
Max Level:	69.2 dB, 10/21/2009 12:3							
Min Level: Overload:	51.6 dB, 10/21/2009 12:3'	/:37PM						
LEQ:	58.8 dB	SEL(3):	89.5 dB	TWA:	45.1 dB	TAKM5:	60.7 dB	
LDN: L5:	58.8 dB 61.9 dB	CNEL: L10:	58.8 dB 60.9 dB	Pa2Sec: L50:	0.4 58.3 dB	L90:	54.9 dB	

APPENDIX D TNM Model Results "T"-Top Noise Barrier Wall

RESULTS: SOUND LEVELS						Pilot Prog	Pilot Program Analysis	s			
TranSystems for Ohio Turnpike CMCox						28 October 2009 TNM 2.5 Calculated with '	28 October 2009 TNM 2.5 Calculated with TNM 2.5	۲ د		_	
RESULTS: SOUND LEVELS								74			
PROJECT/CONTRACT:	Pilot P	Pilot Program Ana	Analysis								
RUN:	NSA 3	Pre-Const	NSA 39 Pre-Construction Monitoring	toring							
BARRIER DESIGN:	INPUT	INPUT HEIGHTS					Average p	avement type	Average pavement type shall be used unless	ŝ	
ATMOSPHERICS.	68 dec	68 dea F. 50% RH					a State hi	ghway agency	a State highway agency substantiates the use of a different type with approval of EHWA	se	
Receiver											
Name No.	o. #DUs	Existing	No Barrier					With Barrier			
		LAeq1h	LAeq1h		Increase over existing	er existing	Type	Calculated	Noise Reduction		
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated Goal	Calculated	ted
						Sub'l Inc			_	minus	
										Goal	
		dBA	dBA	dBA	dB	đВ		dBA	dB dB	đB	
	24	0.0	64.5	99		64.5 1	10	64.5	0.0	8	-8.0
2	25	0.0	69.69	99		69.6	10 Snd Lvl	69.69	0.0	8	-8.0
3		1 0.0	72.2	66		72.2 1	10 Snd Lvl	72.2	0.0	8	-8.0
4 and 5	27	1 0.0	73.6	66		73.6 1	10 Snd Lvl	73.6	0.0	8	-8.0
9		1 0.0	69.3	66		69.3 1	10 Snd Lvl	69.3	0.0	8	-8.0
2		1 0.0	59.8	66		59.8 1	10	59.8	0.0	8	-8.0
8	31	1 0.0	60.4	. 66		60.4 1	10	60.4	0.0	8	-8.0
Dwelling Units	# DUS	Noise	Reduction								
		Min	Avg	Max	1						
		dB	dB	dB	1						
All Selected		0.0	0.0	0.0							
All Impacted	,	4 0.0	0.0	0.0	0						
All that meet NR Goal		0 0.0	0.0	0.0	0						
]

G:\CL06\0060\Environmental\Noise\Pilot program monitoring\TNM\PreCon Pilot 39

RESULTS: SOUND LEVELS							Pilot Pr	Pilot Program Analysis	alysis					
TranSystems for Ohio Turnpike CMCox							28 Octoł TNM 2.5	28 October 2009 TNM 2.5						
RESULTS: SOUND LEVELS							Calcula	Calculated with TNM 2.5	NM 2.5					
PROJECT/CONTRACT:	Pilot	Pilot Program	ram Anal	Analysis										
RUN:	NSA	V 39 Po	st-Consi	NSA 39 Post-Construction w/Barrier Only	arrier Only									
BARRIER DESIGN:	INP	UT HE	INPUT HEIGHTS					Avera	Average pavement type shall be used unless	It type sl	nall be used	l unless		
ATMOSPHERICS:	68 c	deg F,	68 deg F, 50% RH					a Stat of a d	a State highway agency substantiates the use of a different type with approval of FHWA.	gency s with ap	ubstantiate: proval of Fł	s the use łWA.		-
Receiver														
Name	No. #DUs		Existing	No Barrier					With Barrier	arrier				
		2	LAeq1h	LAeq1h		Increase over existing	er existing	I Type	Calculated		Noise Reduction	ion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	t LAeq1h		Calculated	Goal	Calculated	ted
							Sub'l Inc	2					minus Goal	
		dBA		dBA	dBA	dB	qр		dBA	đb		dB	dB	
F	24	F	64.5	64.8	99 66		0.3	10		63.5	1.3		8	-6.7
2	25	-	69.6	69.7	99	5 0.1	1	10 Snd Lvl		65.9	3.8		8	-4.2
ß	26	-	72.2	72.1	99	5 -0.1	1	10 Snd Lvl	LVI	67.6	4.5		8	-3.5
CL	27	-	73.6	74.2	66		0.6	10 Snd Lvl	Lvl	72.8	1.4		8	-6.6
6 Park Control	29	-	69.3	69.3	1 66		0.0	10 Snd Lvl	LVI	69.0	0.3		8	-7.7
7	30	-	59.8	59.6	99	5 -0.2	2	10		59.8	-0.2		8	-8.2
8	31	-	60.4	60.5	99	0.1	1	10 -		59.5	1.0		8	-7.0
4	34	1	73.6	72.9	66	3 -0.7	7	10 Snd Lvl	Lvl	69.0	3.9		8	4.1
Dwelling Units	# DUS	Us N	Noise Red	Reduction										
		Σ	Min	Avg	Max									
		đB	m	đB	đB									
All Selected		8	-0.2	2.0	4.5	10								
All Impacted		Q	0.3	2.8	4.5	10								
All that meet NR Goal		0	0.0	0.0	0.0									
]

G:\CL06\0060\Environmenta\\Noise\Pilot program monitoring\TNM\NSA 39 Post Con

and the second s	Sheet 1 of 1 28 Oct 2009 TranSystems for Ohio Turnpike Project/Contract No. Pilot Program Analysis TNM Version 2.5, Feb 2004 Analysis By: CMCox	Ground Zone: polygon Tree Zone: dashed polygon Contour Zone: polygon Parallel Barrier: Skew Section:
a	NSA 39 Post-Construction w/Barrier Only Barrier View-10.14 feet Run name: NSA 39 Post Con Scale: <dna -="" due="" perspective="" to=""></dna>	Roadway:
Le la		

RESULTS: SOUND LEVELS							α.	ilot Prog	Pilot Program Analysis	sis				
TranSystems for Ohio Turnpike CMCox								28 October 2009 TNM 2.5 Calculated with ⁻	28 October 2009 TNM 2.5 Calculated with TNM 2.5	И 2.5				
RESULTS: SOUND LEVELS PROJECT/CONTRACT: RUN:	Pilot NSA	Pilot Program NSA 39 Post-C	m Analysis -Construct	Pilot Program Analysis NSA 39 Post-Construction w/Barrier Only	arrier Onl	>							_	
BARRIER DESIGN:	10.1	10.14 feet							Average	Average pavement type shall be used unless	e shall be us	sed unless		
ATMOSPHERICS:	68 с	68 deg F, 50% RH	% RH						a State h of a diffe	a State highway agency substantiates the use of a different type with approval of FHWA.	y substantia approval of	Ites the us FHWA.	a	
Receiver														
Name	No. #DUs	s Existir	D,	No Barrier						With Barrier				
		LAeq1	<u>ب</u>	LAeq1h		Increas	Increase over existing	xisting	Type	Calculated	Noise Reduction	uction		
				Calculated	Crit'n	Calculated		Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated	Ited
								Sub'l Inc	8				minus Goal	
		dBA		dBA	dBA	đB		dB		dBA	dB	đB	dВ	
1	24	-	64.5	64.8		66	0.3	10		61.7		3.1	8	4.9
2	25	-	69.6	69.7		66	0.1	10	Snd Lvl	63.4		6.3	8	-1.7
n	26	-	72.2	72.1		66	-0.1	10	Snd Lvl	64.7		7.4	8	-0.6
QU	27	-	73.6	74.2		66	0.6	10	Snd Lvl	72.7		1.5	8	-6.5
6 Park Control	29	1	69.3	69.3		66	0.0	10	Snd Lv	68.9		0.4	8	-7.6
7	30	-	59.8	59.6		66	-0.2	10	1	59.5		0.1	8	-7.9
8	31	-	60.4	60.5		66	0.1	10		58.7		1.8	8	-6.2
4	34	1	73.6	72.9		66	-0.7	10	Snd Lvl	67.0		5.9	8	-2.1
Dwelling Units	\$ND#	Js Noise		Reduction										
		Min		Avg	Мах	1								
		đВ		dB	đB									
All Selected		8	0.1	3.3		7.4								
All Impacted		5	0.4	4.3		7.4								<u> </u>
All that meet NR Goal		0	0.0	0.0		0.0								

G:\CL06\0060\Environmenta\\Noise\Pilot program monitoring\TNM\NSA 39 Post Con

01401-				
i				
FUCCLU	2			
c	7	Ś		
1	2	2		
i	i	1		
	Y			
-	r	ì	-	
ģ	,	5		
:		1		
H	1	Ś		
č	Y			

Pilot Program Analysis

TranSystems for Ohio Turnpike CMCox				28 Octob TNM 2.5	28 October 2009 TNM 2.5					
RESULTS: BARRIER DESCRIPTIONS PROJECT/CONTRACT: RUN: BARRIER DESIGN:	Pilot Pro NSA 39 P 10.14 fee	Pilot Program Analysis NSA 39 Post-Constructi 10.14 feet	Pilot Program Analysis NSA 39 Post-Construction w/Barrier Only 10.14 feet	w/Barrier	Only					
Barriers										
Name	Type	Heights a	Type Heights along Barrier	er	Length	If Wall	If Berm			Cost
		Min	Avg	Мах	1	Area	Volume	Top Width	Run:Rise	
		ff	ff	Ħ	Ŧ	sq ft	cu yd	ft	ft:ft	\$

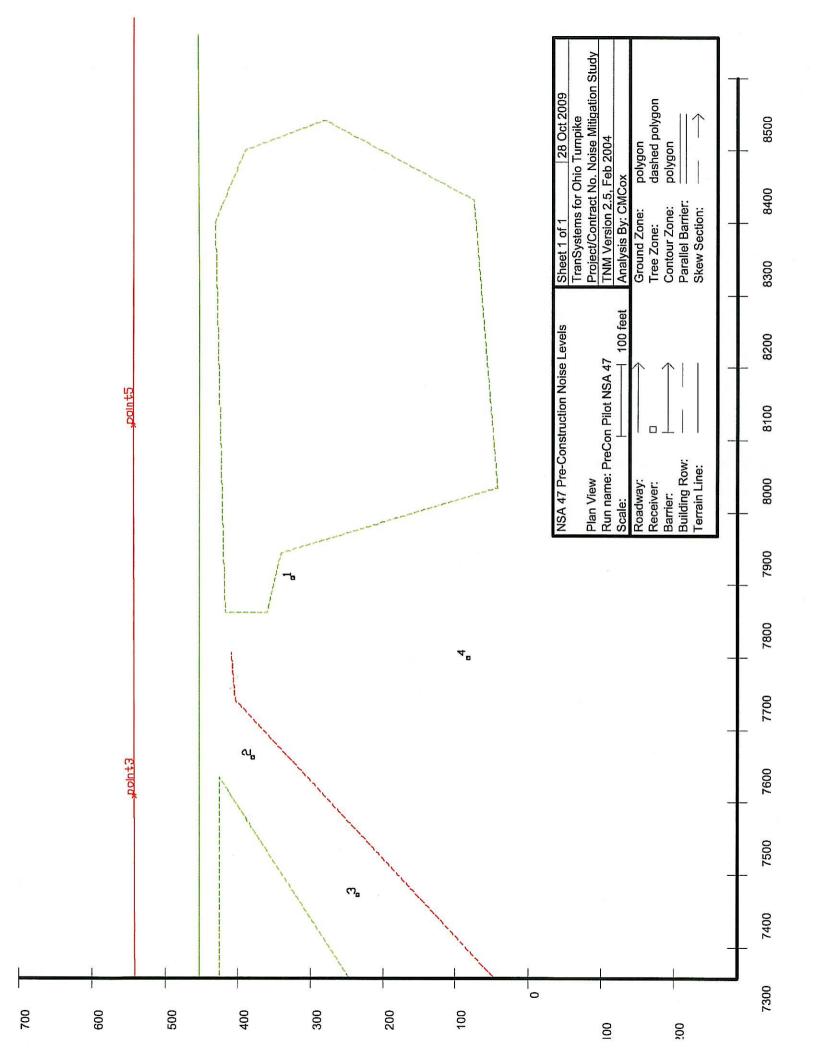
000

Total Cost:

12170 23001

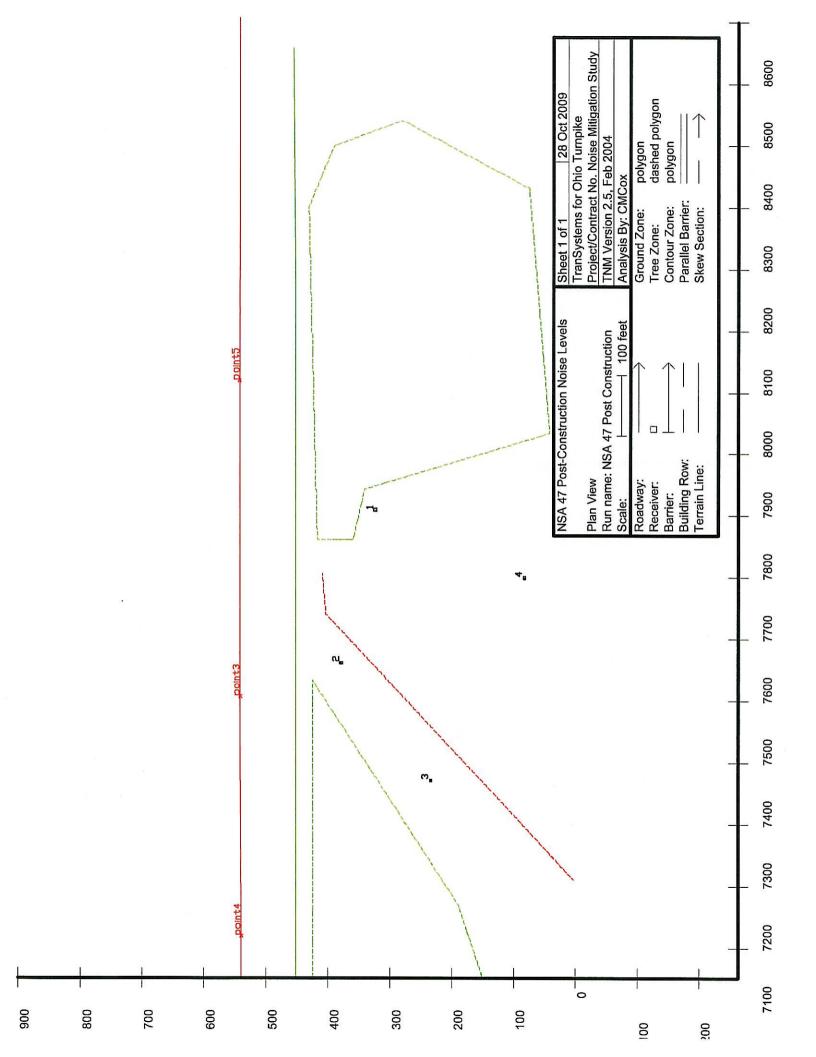
1200 4600

10.50 5.00

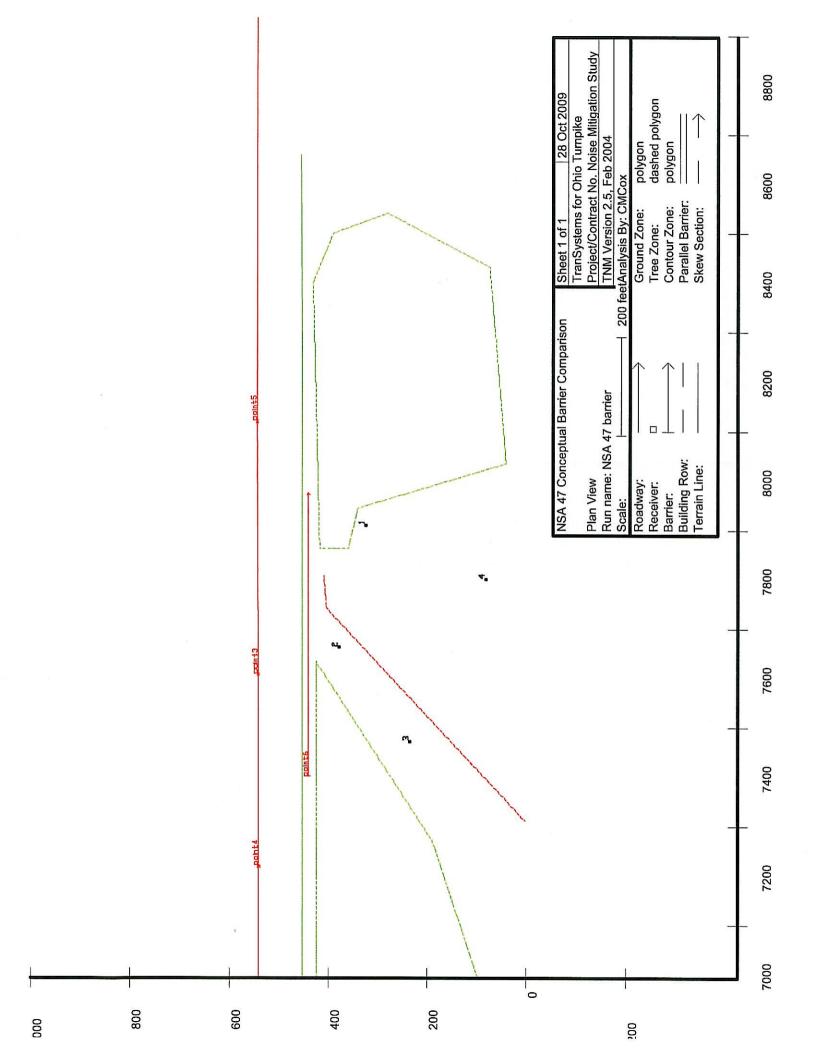

10.14 5.00

9.50 5.00

≥ ≥


"T"-Top Barrier Barrier1 G:\CL06\0060\Environmenta\\Noise\Pilot program monitoring\TNM\NSA 39 Post Con

APPENDIX E TNM Model Results Median-Mounted Acoustic Panels


RESULTS: SOUND LEVELS						*	Noise Mit	Noise Mitigation Study	цу				
TranSystems for Ohio Turnpike CMCox							28 October 2009 TNM 2.5	er 2009					
RESULTS: SOUND LEVELS							Calculate	Calculated with TNM 2.5	1 2.5			_	
PROJECT/CONTRACT:	ž	oise M	Noise Mitigation Study	tudy									
RUN:	ž	SA 47	Pre-Const	NSA 47 Pre-Construction Noise Levels	e Levels								
BARRIER DESIGN:	6	IPUT F	INPUT HEIGHTS					Average	Average pavement type shall be used unless	shall be use	d unless s the use		
ATMOSPHERICS:	9	8 deg l	68 deg F, 50% RH					of a diffe	of a different type with approval of FHWA.	approval of F	e une use HWA.		
Receiver													
Name	No. #I	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over existing	er existing	Type	Calculated	Noise Reduction	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated	σ
							Sub'l Inc		2			minus	
		_										Goal	
		Ū	dBA	dBA	dBA	dB	đВ		dBA	dB	dВ	dВ	
~	24	-	0.0	69.5		66 69.5		10 Snd Lvl	69.5	0.0		8	-8.0
2	25	-	0.0	7.1.7		66 71.7		10 Snd Lvl	7.1.7	0.0		8	-8.0
3	26	-	0.0	65.3		66 65.3		10	65.3	0.0		8	-8.0
4	27	-	0.0	60.5		66 60.5		10	60.5	0.0		8	-8.0
Dwelling Units	#	# DUs	Noise Red	Reduction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		4	0.0	0.0	0.0								
All Impacted		2	0.0	0.0	0.0	0							
All that meet NR Goal		0	0.0	0.0	0.0 0.0	0							
]

G:\CL06\0060\ENVIRONMENTAL\NOISE\PILOT PROGRAM MONITORING\TNM\NSA 47 Existing

o Turnpike EVELS EVELS TIM 2.5 EVELS TIM 2.5 EVELS TIM 2.5 EVELS TIM 2.5 EVELS TIM 2.5 Evel TIM 2.5 TIM 2.5 Evel TIM 2.5 TIM 2.5 TIM 2.5 Evel TIM 2.5 Calculated with TIM 2.5 Calculated with TIM 2.5 Calculated with TIM 2.5 Calculated be used a State highway agency substantiates the use a State highway agency substantiates the used a State highway agency substantiates the use a State highway agency substant	RESULTS: SOUND LEVELS							Noise Mitigation Study	gation Stu	dy			
TS: SOUND LEVELS TS: SOUND LE	TranSystems for Ohio Turnpike CMCox							28 Octob TNM 2.5	er 2009				
Noise Mitigation Study N3A 47 Post-Construction Noise Levels INPUT HEIGHTS Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH Average pavement type shall be used unless SPHERICS: IS deg F, 50% RH I average pavement type shall be used unless SPHERICS: IS deg F, 50% RH I average pavement type shall be used unless Image: Image: I average I average pavement type shall be used unless Image: Image: Image: Image: I average Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: <td>BESUIT TS: SOLIND LEVELS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Calculate</td> <td>d with TNI</td> <td>Л 2.5</td> <td></td> <td></td> <td></td>	BESUIT TS: SOLIND LEVELS							Calculate	d with TNI	Л 2.5			
NSA 47 Post-Construction Noise Levels INPUT HEIGHTS Average pavement type shall be used unless a State billyway agency substantiates the use a State billyway agency superval of FHWA. SPHERICS: Average pavement type with approval of FHWA. Average pavement type with approva	PROJECT/CONTRACT:	No	ise M	itigation S	study								
ER DESIGN:INPUT HEIGHTSAverage pavement type shall be used unless a state highway agency substantiates the use a state highway agency substantiates the use of a different type with approval of FHWA.SPHERICS:East a different type with approval of FHWA.SPHERICS:East a different type with approval of FHWA.SPHERICS:East a different type with approval of FHWA.No.#DUsEast a different type with approval of FHWA.No.#DUsCalculatedCalculatedNo.#DUSEast a different type with approval of FHWA.No.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSCalculatedCalculatedNo.#DUSNo.60.460.4No.No.No.No.CalculatedCalculatedNo.No.No.<	RUN:	NS	A 47 I	ost-Con	struction Noi	ise Levels							
a case ngrway agency substantiates the use a case ngrway agency substantiates the use of a different type with approval of FHWA.erof a different type with approval of FHWA.erNo.#DUsExisting HDusNo.MIth BarrierImage: provided colspan="6">CritinImage: provided colspan="6">Image: provide colspan="6">Image: provide colspan="6">Image: provided colspan="6">Image: provide colspan="6"Image: provided colspan="6"Image: provided colspan="6"Image: provided colspan="6">Image: provided colspan="6"Image: provided colspan="6"Image: provided colspan="6">Image: provided colspan="6"Image: provi	BARRIER DESIGN:	N	PUTF	IEIGHTS					Average	pavement type	e shall be use	d unless	
Interview With Barrier No. #DUs Existing No #Mith Barrier With Barrier No Haq1h LAeq1h Increase over existing Type Calculated No: Redunction No Haq1h Calculated Crith Calculated Crith Inpact LAeq1h Calculated No: No BA dBA dBA dBA dB Mith Barrier Calculated Crith Inpact LAeq1h Calculated Color Sub1 Inc Poil	ATMOSPHERICS:	68	deg l	=, 50% RH					a state n of a diffe	ignway agenc rent type with	y substantiate approval of F	es the use HWA.	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Receiver												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name			Existing	No Barrier					With Barrier			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				LAeq1h	LAeq1h		Increase over	r existing	Type	Calculated	Noise Reduc	tion	
# DU dBA dBA dBA dBA dBA dBA dBA dB					Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Sub'l Inc					minus
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													Goal
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				JBA	dBA	dBA	dB	дB		dBA	dB	dB	dB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	24	-	0.0						69.4			8 -8.0
26 1 0.0 65.2 66 65.2 10 65.2 0.0 27 1 0.0 60.5 66 60.5 10 65.2 0.0 # DUs Min 60.5 66 60.5 10 60.5 0.0 Min Avg Max Max dB dB dB dB 1 2 0.0 0.0 0.0 0.0 60.5 0.0 60.5 0.0 60.5 0.0 60.5 0.0 60.5 0.0 60.5 0.0 60.5 0.0	2	25	-	0.0						71.5			8 -8.0
27 1 0.0 60.5 66 60.5 10 60.5 0.0 # DUs Noise Reduction Min Avg Max Min Avg Max 1 4 0.0 0.0 2 0.0 0.0 2 0.0 0.0	ß	26	-	0.0						65.2			8 -8.0
# DUs Noise Reduction Min Avg Max dB dB dB 2 0.0 0.0	4	27	-	0.0		-				60.5			8 -8.0
Min Avg Max dB dB dB dB 2 0.0 0.0 0.0	Dwelling Units	1#			duction								
dB dB dB dB dB				Min	Avg	Max							
4 0.0 0.0 2 0.0 0.0				dB	đB	dB							
2 0.0 0.0	All Selected		4	0.0									
	All Impacted		2	0.0									
0 0.0	All that meet NR Goal		0	0.0		0.0 0.0	0						

G:\CL06\0060\Environmental\Noise\Pilot program monitoring\TNM\NSA 47 Post Construction

o Tumpike TVM 2.5 EVELS TVM 2.5 EVELS TVM 2.5 EVELS TVM 2.5 EVELS TVM 2.5 Calculated with TNM 2.5 Calculated Calculated	RESULTS: SOUND LEVELS							Noise Mit	Noise Mitigation Study	ły			
TS: SOUND LEVELS Calculated with TNM 2.5 CTICONTRACT: Noise Mitigation Study CSTICONTRACT: Noise Mitigation Study INS 47 Conceptual Barrier Comparison R DESIGN: NULT HEIGHTS SPHERICS: Is May agency substantiates the use of a different type with approval of FHWA. SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless a state highway agency substantiates the use of a different type with approval of FHWA. SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless SPHERICS: Is deg F, 50% RH Average pavement type shall be used unless Is deg F, 50% RH Average pavement type shall be used unless Average pavement type with approval of FHWA. Is deg F, 50% RH Conceluleted Crittin Interesse over existing Type Cal	TranSystems for Ohio Turnpike CMCox							28 Octob TNM 2.5	ler 2009				
CTCONTRACT: Noise Mitigation Study INPUT HEIGHTS Na 47 Conceptual Barrier Comparison INPUT HEIGHTS Average pavement type shall be used unless a state highway agency substantiates the use a state highway agency substantiates a state highway ag	RESULTS: SOUND LEVELS							Calculate	ed with TNN	1 2.5			
NSA 47 Conceptual Barrier Comparison INPUT HEIGHTS Average pavement type shall be used unless SPHERICS: Cla dig F, 50% RH Average pavement type shall be used unless SPHERICS: Cla dig F, 50% RH Average pavement type shall be used unless SPHERICS: Cla dig F, 50% RH Average pavement type shall be used unless Average pavement type to the tot tot tot tot tot tot tot tot tot to	PROJECT/CONTRACT:	-	Voise N	litigation {	Study								
ER DESIGN:INPUT HEIGHTSAverage pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.SPHERICS:Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.SPHERICS:Average pavement type shall be used a State highway agency substantiates the use of a different type with approval of FHWA.No. #DUsKistingNo. #DUsExistingNo. #DUsExistingNo existingTypeCalculatedNoise ReductionAndBAdBAdBAdBAdBAdBAdBAdBAdBACalculatedCrittrinImpactCalculatedCrittrinImpactLdeqthCalculatedGoalCalculatedCrittrinCalculatedCrittrinImpactCalculatedGoalGoalCalculatedCrittrinImpactCalculatedCrittrinImpactLdeqthCalculatedCalculatedCrittrinImpactCalculatedCrittrinImpactLdeqthCalculatedCalculatedCalculatedCrittrinImpactCalculatedCrittrinImpactLdeqthCalculatedCalculatedCalculatedCrittrinCalculatedCrittrinImpactLdeqthCalculatedGoalCalculatedCalculatedCrittrinCalculatedCrittrinCalculatedCrittrinCalculatedCalculated <td>RUN:</td> <td>-</td> <td>VSA 47</td> <td>Conceptu</td> <td>al Barrier Co</td> <td>mparison</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	RUN:	-	VSA 47	Conceptu	al Barrier Co	mparison							
SPHERICS:68 deg F, 50% RHa care any early 5 unsummates the value of a different type with approval of FHW.rentNo.#DUsExistingNo.MolHandHandLandNo.HandNo.LandHandLandCalculatedCalculatedNoise ReductionLandDBAdBAdBAdBCalculatedNoise ReductionLand2410.069.56669.510Sub' IncLand2510.065.36665.310Snd LM66.5LandMinAvgMa6665.31050.13.48Noise Reduction2710.060.56660.51050.73.48NoMinAvgMaMaMaMa45.31061.93.48NoMinAvgMaMaMa60.550.550.73.48NoMinAvgMaMa60.51061.93.48NoMinAvgMaMaMa60.511.83.48NoMinAvgMaMa61.93.48NoMinAvgMaMa61.93.48NoMaMaMaMaMaMaMa11.83.48No<	BARRIER DESIGN:		INPUT	HEIGHTS					Average I	bavement type	shall be use	d unless	
Image: Protect of the set of th	ATMOSPHERICS:		68 deg	F, 50% RF	_				a state in of a differ	gliway agenc ent type with	y substantiate approval of F	es me use HWA.	24
No.#DUsExistingNo BarrierWith BarrierLag thLag thLag thIncrease over existingTypeCalculatedLag thCalculatedCrit'nImpactCalculatedNoise ReductionLag thCalculatedCrit'nImpactCalculatedNoise ReductionLag thCalculatedCrit'nImpactCalculatedNoise ReductionLag thCalculatedCrit'nImpactCalculatedNoise ReductionLag thCalculatedCrit'nImpactCalculatedCalculatedLag thCalculatedCrit'nImpactNoise ReductionLag thCalculatedCrit'nImpactNoise ReductionLag thCalculatedCrit'nImpactNoise ReductionLag units2310.065.36665.3No Units#DUsNoise Reduction56.36660.510Motint#DUsNoise Reduction48483.4No Units#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsNoise Reduction3.48Motint#DUsMax48.5 <t< td=""><td>Receiver</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Receiver												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name			Existing	No Barrier					With Barrier			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				LAeq1h	LAeq1h		Increase ove	existing	Type	Calculated	Noise Reduc	tion	
Sub1 Inc					Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h		Goal	Calculated
								Sub'l Inc		3			minus
		_											Goal
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				dBA	dBA	dBA	dB	Вb		dBA	dB	dB	dB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		24	1	0.0						65.6			8 4.1
26 1 0.0 65.3 66 65.3 10 61.9 3.4 27 1 0.0 60.5 66 60.5 10 58.7 1.8 # DUs Noise Reduction 58.7 1.8 58.7 1.8 Min Avg Max 58.7 1.8 58.7 1.8 1 0 61 80.5 10 58.7 1.8 1 Avg Max 58.7 1.8 1 Avg Max 58.7 1.8 1 Avg Max 58.7 1.8	2	25	1	0.0						62.7			8 1.0
27 1 0.0 60.5 66 60.5 10 58.7 1.8 # DUs Noise Reduction min Avg Max Min Avg Max 1 4B 4.5 9.0 2 3.9 6.4 9.0 1 9.0 9.0	3	26	-	0.0						61.9			8 -4.6
# DUs Noise Reduction Min Avg Max AB dB dB dB 4 1.8 4.5 2 3.9 6.4	4	27	-	0.0						58.7			8 -6.2
Min Avg Max dB dB dB dB 1 1.8 4.5 4.5 1 9.0 6.4 9.0	Dwelling Units				duction								
dB dB dB dB dB 1.8 dB 1		_		Min	Avg	Max							
4 1.8 4.5 2 3.9 6.4 1 9.0 9.0				đB	dB	dB							
2 3.9 6.4	All Selected		4	1.8			0						
1 9.0	All Impacted		2	3.6			0						
	All that meet NR Goal		1	9.0			0						

G:\CL06\0060\ENVIRONMENTAL\NOISE\PILOT PROGRAM MONITORING\TNM\NSA 47 barrier

Pilot Program Summary Report Ohio Turnpike Commission Contract No. 71-08-02

55 Public Square, Suite 1900 Cleveland, OH 44113-1901 216-861-1780