

OHIO TURNPIKE AND INFRASTRUCTURE COMMISSION

ADDENDUM NO. 1

PROJECT NO. 43-19-02

BRIDGE DECK REPAIR AND REHABILITATION OHIO TURNPIKE OVER ABANDONED RAILROAD M.P. 34.2, OHIO TURNPIKE OVER STATE ROUTE 108 M.P. 34.5, COUNTY ROUTE 14 OVER OHIO TURNPIKE M.P. 35.2 FULTON COUNTY, OHIO

OPENING DATE: 2:00 P.M. (EASTERN TIME), FEBRUARY 13, 2019

ATTENTION OF BIDDERS IS DIRECTED TO: ANSWERS TO QUESTIONS RECEIVED THROUGH 3:00 PM ON FEBRUARY 6, 2019

-AND-

GEOTECHNICAL REPORTS

-AND-

MODIFICATIONS TO THE CONTRACT DOCUMENTS

Plan Sheets: 4, 5, 6, 11, 13, 16, 20, 29, 30, 31, 40, 42, 44, and 51 of 123.

Bid Schedule of Items and Estimated Quantities Worksheet: Ref. Nos. 12, 26, 107 and 113

> General Conditions: Article 15.1

Issued by the Ohio Turnpike and Infrastructure Commission by Anthony D. Yacobucci, Chief Engineer, and Mark R. Musson, Director of Contracts Administration.

Anthony D. Yacobucci

Mark R. Musson

ANSWERS TO QUESTIONS RECEIVED THROUGH 3:00 P.M. ON FEBRUARY 6, 2019:

Q#1 Can we use QC2 concrete in lieu of HP4 concrete?

A#1 Class QC2 concrete is acceptable as a replacement for Class HP4 concrete at no additional cost to the Commission. Where appearing throughout the Contract Documents "Class HP 4 Concrete" is supplemented with "or Class QC2 Concrete" through this Addendum No. 1. All applicable provisions of Item 511 of the Specifications shall apply except as modified in SP 511B for both HP4 and QC2.

Q#2 The maintenance of traffic notes do not specify restrictions or durations for shutting down SR 108. Can SR 108 be shut down for the duration of construction?

- A#2 The "Maintaining Traffic" Note No. 13 on Plan Sheet 11 of 123 has been revised to include clarification on the closing of State Route 108. During the period when County Route 14 is closed and detoured, two-way traffic shall be maintained at all times on State Route 108. The use of temporary single-lane closures shall be minimized and no temporary closures of both lanes on State Roue 108 will be pemitted during this period. To accommodate traffic before, during and after the Fulton County Fair, two lanes of traffic without restriction shall be maintained on State Route 108 during the periods of 8/23/2019 thru 9/7/2019 and 8/28/2020 thru 9/12/2020. Closures outside of these times will require approval by The Ohio Department of Transportation and Fulton County. Revised Plan Sheet 11 of 123 is included as part of this Addendum No. 1.
- Q#3 Since this project has pay item SPEC 536 CONCRETE WEATHER PROOFING, MEDIAN WALL – 1785 SY, will the requirement in CBR-2 page 1 of 3 note 7 (Cure and Seal wall with Chemmasters Silencure A or Approved Equal) be waived? With the wall getting Concrete Weather Proofing we assume that at the time of the Median Wall installation it should be cured per 622.07 (511.14, Method B Membrane Curing), which would then be removed at time of Weather Proofing installation. Silencure A is a costly material to use if it's going to be removed so Weather Proofing can be put on wall.
- A#3 Plan Sheets 40 and 42 of 123 have been revised to remove Item SP 536 Concrete Weatherproofing, Median Wall – 1785 Sq. Yd. Note #7 on the OTIC Standard Drawing CBR-2 includes the curing and sealing requirements. In addition, the quantity for Reference No. 26, Item SP 536 – Concrete Weatherproofing, Median Wall has been removed from the Bid Schedule of Items and Estimated Quantities Worksheet. Revised Plan Sheets 40 and 42 of 123, the Bid Schedule of Items and Estimated Quantities Worksheet are included as part of this Addendum No. 1.

- Q#4 PCB-9 is called on twice on sheet 30 of 123 on EB and WB sides of the roadway and respective stationing is not represented in the MOT subsummary. Please indicate which sheet should be used for LS pricing.
- A#4 The PCB-9 callout in the westbound direction on Plan Sheet 30 of 123 should have been labeled as PCB-10. PCB-10 is represented correctly on MOT Subsummary Plan Sheet 20 of 123. In addition, the eastbound PCB-9 is incorrectly listed as STA 630+05 to STA 641+50 RT on Plan Sheet 20 of 123. This station range error affects the quantity of Item 614, Object Marker, One Way. Plan Sheet 20 of 126 was revised to correct the station range, which is STA 627+50 to STA 630+57, as well as the Item 614, Object Marker, One Way quantity from 24 to 7. Furthermore, MOT General Summary Plan Sheet 16 of 123 was revised to correct the Item 614, Object Marker, One Way quantity for Plan Sheet 20 from 153 to 136 and the Grand Total from 264 to 247. Reference No. 113, Item 614, Object Marker, One Way quantity was revised from 264 to 247 on the Bid Schedule of Items and Estimated Quantities Worksheet. Revised Plan Sheets 16, 20 and 30 of 123, the Bid Schedule of Items and Estimated Quantities Worksheet are included as part of this Addendum No. 1.

Q#5 PCB-12 is shown on the MOT plan sheet 31/123 as starting at station 641+50 and ending at 650+50 however the leader notes on sheet 31/123 states the ending at station 654+00. Which is correct?

A#5 The ending station for the PCB-12 callout on Plan Sheet 31 of 123 is incorrectly listed as STA 654+00. The correct stationing is "STA 641+50 to STA 650+50". MOT Subsummary Plan Sheet 20 of 123 lists the station range correctly as STA 641+50 to STA 650+50. Revised Plan Sheets 31 of 123 is included as part of this Addendum No. 1.

Q#6 Please confirm and clarify the note on general summary sheet 13/126 regarding the estimated quantity for PCMS. Is the quantity of days to be priced 480 days based on 2 PCMS x240 days?

A#6 The Item 614 Portable Changeable Message Sign, As Per Plan note on Plan Sheet 13 of 123 is intended to mean two (2) Portable Changeable Message Signs at 240 days each for a total of 480 days. The portion of the note that indicates 960 days is incorrect while the second portion of the note and the General Summary quantity are correct at 480 days. The Item 614 Portable Changeable Message Sign, As Per Plan note on Plan Sheet 13 of 123 has been revised and is included as part of this Addendum No. 1.

Q#7 Can the Turnpike please provide soil borings for the SR 108 bridges?

A#7 The Geotechnical Subsurface Investigation Reports, which include the soil borings, for the bridge at MP 34.2 as well as the bridge at MP 34.5 (State Route 108) are provided in accordance with IB Art. 2.1.4 through this Addendum No. 1.

- Q#8 Bid item 49- Erosion Control: is this Lump Sum item meant to be an allowance per ODOT 832?
- A#8 The Commission will respond to this question in Addendum No. 2.
- Q#9 Typical sections make reference to "Item 206- Chemically Stabilized Subgrade, As Per Plan" but there are no stabilization bid items. Please clarify whether or not the subgrade is to be chemically stabilized and if so please set up corresponding bid items.
- A#9 Chemically Stabilized Subgrade is not being used. This has been replaced by Item 204 Subgrade Compaction. Plan Sheets 4, 5, and 6 of 123 have been revised to remove Item 8 – Chemically Stabilized Subgrade, As Per Plan and replace it with Item 204 – Subgrade Compaction. In addition, the quantities for Item 204 – Subgrade Compaction on Plan Sheets 40 and 44 of 123 has been revised to incorporate the additional area, as well as the quantity for Reference No. 12 on the Bid Schedule of Items and Estimated Quantities Worksheet. Revised Plan Sheets 4, 5, 6, 40 and 44 of 123, the Bid Schedule of Items and Estimated Quantities Worksheet are included as part of this Addendum No. 1.

Q#10 With the work types that can be controlled by the prime contractor, and also needing to provide 11% DBE/EDGE/SBE participation, Would the OTIC consider lowering the Limits on Subcontracting per 15.1 to 35% from the 55% that is presently called for?

- A#10 After reconsidering the limits on subcontracting, the Commission will approve the Contractor to subcontract up to the amount requested. Accordingly, GC Article 15 is modified through this Addendum No. 1 to provide that the Contractor shall perform with the Contractor's own organization, Work amounting to not less than thirty-five percent (35%) of the total Contract Price.
- Q#11 Bid item 107- Water Work Misc: Fulton County Public Utility Charges: this bid item has notes on plan sheet 69 giving an approximate amount with final adjustment paid by change order. Should this bid item be in the proposal to be bid at a fixed amount of \$5000, treated similar to an erosion control allowance?
- A#11 An allowance value of \$5,000.00 has been placed in the Bid Schedule of Items and Estimated Quantities Worksheet for Reference No. 107, Item 638 - Water Work Misc: Fulton County Public Utility Charges.

- Q#12 Bid item 127- Pavement For Maintaining Traffic, Class A, As Per Plan: plan sheet 13 note says to refer to median crossover shown on plan sheets 22-23. Plan sheets 22-23 show typical median section not including the crossover. Note also makes reference to "Resurfacing" of existing median crossover. Please provide corrected sheet number, confirmation plan stations for the limits of this item, and what portion gets rebuilt as opposed to resurfaced.
- A#12 On Plan Sheet 13 of 123, plan note Item 615 Pavement For Maintaining Traffic, Class A, As Per Plan, the references to Plan Sheets 22 and 23 of 123 are incorrect. The portions of the existing crossover to be resurfaced were illustrated with cross hatching on Plan Sheets 31 and 32 of 123. Additional details and revised plan sheets regarding the crossover resurfacing will be provided in Addendum 2.
- Q#13 Bid items 133 and 134 are Lump Sum for Portable Barrier with and without glare screen. From review of maintenance of traffic plans, there does not appear to be any footage of barrier with glare screen. Please either remove bid item 134 or specify what stations in what phase have portable barrier wall with glare screen requirements.
- A#13 To prevent headlight glare from opposing traffic, provide Portable Barrier with Glare Screen to PCB-7 (STA. 624+31 to STA. 627+50) on Plan Sheet 29 of 123, PCB-8 (STA. 627+50 to STA. 633+73) on Plan Sheet 30 of 123 and PCB-14 (STA. 652+23 to STA. 655+02) on Plan Sheet 31 of 123 during Phase 2 Maintenance of Traffic. Revised Plan Sheets 29, 30, and 31 of 123 are included as part of this Addendum No. 1.
- Q#14 Plan sheet 11, Pre-Phase 1, note #2 states to install temporary pavement on EB exit ramp to SR 108 (exit 34) which is also stated in Pre-Phase 2 note #1. Please clarify which phase this work will be performed in. Also, sheets 17 & 18 do not have quantity in column 615, Pavement for Maintaining Traffic, Class A, APP. Would you please provide pavement calculations for this work item.
- A#14 The Commission will respond to this question in Addendum No. 2.
- Q#15 Plan sheet 13, Item 615 Pavement for Maintaining Traffic, Class A, APP states resurfacing of the existing cross over as shown on sheets 22-23 which are not the correct sheets. Please provide additional information as it pertains to this note.
- A#15 See the response to Q#12.
- Q#16 There are no plan sheets or quantities for maintenance of traffic phasing/schematics for SR 108. Please provide this missing information.
- A#16 The Commission will respond to this question in Addendum No. 2.

- Q#17 Item 204 Subgrade compaction is only called for under the new approach slabs at the SR-108 bridge, Is the Subgrade compaction incidental to the SP-304 in all other areas?
- A#17 See the response to Q#9.
- Q#18 Is it acceptable for the contractor use QC2 concrete in lieu of HP4?
- A#18 See the response to Q#1.
- Q#19 Bid item 127- the plan quantity of 1970 sy appears to be greatly understated as compared to what is shown on plan sheets 29-32. Since no source of quantity was given, please provide more concise information on how this quantity was derived.
- *A#19 The Commission will respond to this question in Addendum No. 2.*
- Q#20 Plan sheets 29-30 show temporary pavement in between the newly constructed phase 1 pavement and the proposed inside shoulder reconstructed 615 pavement in an area west of the abandoned railroad bridge. How is this proposed pavement to be paid for?
- *A#20* The Commission will respond to this question in Addendum No. 2.
- Q#21 Please provide more detail for Pavement for Maintaining Traffic Class A, APP. The note does not include milling depth or required mix type.
- A#21 See the response to Q#12.
- Q#22 Sheet 30/123 and 31/123 have areas hatched for crossovers but no legend for the item of work to be performed?
- A#22 See the response to Q#12.
- Q#23 Pavement for Maintaining Traffic Class A, APP quantity appears to include the resurfacing of the East & West crossovers shown on sheets 30/123 & 31/123. Although, there is no existing crossover at the west end near sta. 632+00. Please advise the intent of this work.
- A#23 See the response to Q#12.

- Q#24 Shoulder details on sheet 6/123 show stabilization limits, but there are no stabilization work items in the general summary.
- A#24 See the response to Q#9.
- Q#25 Item 90 Asphalt Surface Course with Crushed Slag is called out with 70-22 binder in the proposal and 76-22 binder in the general summary. What binder is to be used for this item?
- *A#25* The Commission will respond to this question in Addendum No. 2.
- Q#26 Please revise the call outs on the MOT plan sheets for PCB. It appears there are errors with stationing and duplicated quantities in the sub summary.
- A#26 See the responses to Q#4 and Q#13.
- Q#27 Can an estimated quantity be provided for PCB with/without Glare Screen?
- A#27 See the response to Q#13.
- Q#28 Regarding the Temporary Wirewalls- will OTIC require final stamped engineer drawings per ODOT 870 specification which is referenced on the plans?

A#28 Yes.

MODIFIED CONTRACT DOCUMENTS

With this Addendum No. 1, the Commission substitutes the enclosed material for the following Contract Documents:

Plan Sheets: 4, 5, 6, 11, 13, 16, 20, 29, 30, 31, 40, 42, 44, and 51 of 123.

with additions to the Plan Drawings are called out with a cloud and a revision triangle as thus:

With this Addendum No. 1, the Commission modifies the Bid Schedule of Items for the following Reference Numbers: 12, 26, 107 and 113

ADDENDUM NO. 1 PROJECT NO. 43-19-02 PAGE 8

Receipt of Addendum No. 1 Project No. 43-19-02 is hereby acknowledged:

(Firm Name)

(Signature)

(Printed Name)

(Date)

BIDDERS MUST RETURN THE ABOVE ACKNOWLEDGEMENT OF RECEIPT OF ADDENDUM NO. 1 WITH THEIR BID.

GPD Group Cleveland, Ohio

Geotechnical Subsurface Investigation OTIC MP 34.2 Bridge Demolition Wauseon, Fulton County, Ohio

December 2017

1915 North 12th Street Toledo, OH 43604-5305 T 419-324-2222 F 419-241-1808 www.ttlassoc.com

December 1, 2017

TTL Project No. 1580701

Mr. Tom Washko, P.E. GPD Group 5595 Transportation Boulevard, Suite 100 Cleveland, Ohio 44125

Geotechnical Subsurface Investigation OTIC MP 34.2 Bridge Demolition Wauseon, Fulton County, Ohio

Dear Mr. Washko:

Following is the report of the geotechnical subsurface investigation performed by TTL Associates, Inc. (TTL) at the site of the referenced project. This investigation was performed in general accordance with TTL Proposal No. 15807.01R, dated June 29, 2017, and authorized by you on October 13, 2017.

This final report contains the results of our study, incorporates furnished ground surface elevations into the boring logs, and provides our construction recommendations for embankment fill placement.

Soil samples collected during this investigation will be stored at our laboratory for 90 days from the date of this report. The samples will be discarded after this time unless you request that they be saved or delivered to you.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely,

TTL Associates, Inc.

Katherine C. Hennicken, P.E. Geotechnical Engineer

1 Jan FAT Thom

David M. Vovak, P.E. Transportation Director

T:\Geotech\Projects 2017\15807.01_02...\Report - OTIC MP 34.2 Bridge Demolition\1580701 TTL Geotech Report OTIC MP 34.2 Bridge Demolition Fulton County OH.docx

GEOTECHNICAL SUBSURFACE INVESTIGATION OTIC MP 34.2 BRIDGE DEMOLITION WAUSEON, FULTON COUNTY, OHIO

FOR

GPD GROUP 5595 TRANSPORTATION BOULEVARD, SUITE 100 CLEVELAND, OHIO 44125

SUBMITTED

DECEMBER 1, 2017 TTL PROJECT NO. 1580701

TTL ASSOCIATES, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222 (419) 321-6257 (FAX)

TABLE OF CONTENTS

1.0	IN	FRODUCTION	1
2.0	IN	VESTIGATIVE PROCEDURES	2
3.0	PR	OPOSED CONSTRUCTION	4
4.0	GE	NERAL SITE AND SUBSURFACE CONDITIONS	5
4	1.1	General Site Conditions	5
4	1.2	Site Geology	5
4	1.3	General Soil Conditions	6
4	1.4	Groundwater Conditions	7
5.0	DE	SIGN RECOMMENDATIONS	8
5	5.1	New Embankment Fill	8
5	5.1.1	Instrumentation	9
5	5.1.2	Downdrag1	0
5	5.2	Groundwater Control 1	0
5	5.3	Excavations and Slopes	1
6.0	CC	DNSTRUCTION RECOMMENDATIONS 1	13
6	5.1	Site Preparation 1	3
6	5.2	Embankment Construction for Replacement of Bridge Structures 1	3
6	5.2.1	Instrumentation 1	3
6	5.3	<u>Fill</u>	4
7.0	QU	JALIFICATIONS OF RECOMMENDATIONS1	6

PLATES

Plate 1.0 Site Location Map Plate 2.0 Test Boring Location Plan

FIGURES

Logs of Test Borings B-1 and B-2 Legend Key Tabulation of Test Data One-Dimensional Consolidation Settlement Calculations

1.0 INTRODUCTION

This geotechnical subsurface investigation report has been prepared for the bridge demolition project in Fulton County, Ohio. The project is located at mile post (MP) 34.2 of the James W. Shocknessy Ohio Turnpike (Interstate Route 90 [IR-90]) approximately ¹/₄ mile west of State Route (SR) 108, as shown on the attached Site Location Map (Plate 1.0).

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, presents our findings from the field and laboratory testing, and provides our design and construction recommendations for embankment construction.

This investigation was performed in general accordance with TTL Proposal No. 15807.01R, dated June 29, 2017, and authorized by Mr. Tom Washko, P.E. of GPD Group on October 13, 2017.

The purpose of this investigation was to evaluate the subsurface conditions relative to the design and construction of embankments at the referenced location. To accomplish this, TTL performed two test borings, field and laboratory soil testing, a geotechnical engineering evaluation of the test results, and review of available geologic and soils data for the project area.

This report includes:

- A description of the subsurface soil and groundwater conditions encountered in the borings.
- Design recommendations for embankments.
- Recommendations concerning soil and groundwater-related construction procedures such as site preparation, earthwork, foundation construction, and related field testing.

The scope of this study did not include an environmental assessment of the subsurface materials at this site.

2.0 INVESTIGATIVE PROCEDURES

Two test borings, designated as Borings B-1 and B-2, were drilled by TTL on October 31 and November 2, 2017. Boring B-1 was performed on the north side of the existing twin bridges, and Boring B-2 was performed on the south side. The boring locations were established in the field by TTL based on direction from GPD Group. Ground surface elevations at the boring locations were estimated to the nearest foot based on topographic contours shown on plan drawings provided by GPD Group. The approximate locations of the test borings are shown on the attached Test Boring Location Plan (Plate 2.0).

The test borings were performed in general accordance with Ohio Department of Transportation (ODOT) "Specifications for Geotechnical Explorations" (July 2017). The test borings performed during this investigation were drilled with an ATV-mounted rotary drilling rig utilizing 3¹/₄-inch inside diameter hollow-stem augers. Both borings were extended to a depth of 80 feet below existing grade.

During auger advancement, soil samples were collected at 2¹/₂-foot intervals to a depth of 10 feet and at 5-foot intervals thereafter using a split-spoon sampler. The soil samples were sealed in jars and transported to our laboratory for further classification and testing.

Split-spoon (SS) samples were obtained by the Standard Penetration Test (SPT) Method (ASTM D 1586), which consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch intervals with the number of blows per increment being recorded at each depth interval, and these data are presented under the "Std. Pen." column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m -value, and is typically reported in blows per foot (bpf). The N_m -values were corrected to an equivalent rod energy ratio of 60 percent, N_{60} . The calibrated hammer/rod energy ratio for the drill rig utilized for this project was 80.3 percent, and was last calibrated on January 10, 2017. The N_{60} values are presented on the attached Logs of Test Borings and Tabulation of Test Data sheets. In conjunction with published data and typical correlations, the N_{60} -value can be evaluated as a measure of soil compactness/consistency as well as shear strength and bearing capacity.

Shelby tube samples, designated ST on the Logs of Test Borings, were obtained from 26 to 28 feet and from 51 to 53 feet in Boring B-1, as well as from 16 to 18 feet and from 46 to 48 feet in Boring B-2. Each of the Shelby tube samples were obtained by hydraulically advancing a 3-inch diameter, thin walled sampler approximately 24 inches beyond the hollow stem auger into relatively undisturbed soil in accordance with ASTM D 1587. The Shelby tubes were then extracted from the subsoils, and the ends were capped and sealed. The samples were transported to our laboratory where they were extruded, classified, and tested.

Soil conditions encountered in the test borings are presented in the Logs of Test Borings, along with information related to sample data, SPT results, water conditions observed in the borings, and laboratory test data. It should be noted that these logs have been prepared on the basis of laboratory classification and testing, as well as field logs of the encountered soils.

All of the recovered subsoil samples were classified in accordance with the ODOT soil classification system. Where gradation and plasticity tests were not performed for a "direct" mechanical determination of the appropriate ODOT classification, the soils were classified using visual-manual procedures. All samples of the subsoils were tested in our laboratory for moisture content (ASTM D 2216). The Shelby tube samples and selected intact cohesive split-spoon samples were tested for dry density and unconfined compressive strength utilizing constant rate of strain methods (ASTM D 2166). Unconfined compressive strength estimates were obtained for the remaining intact cohesive samples using a calibrated hand penetrometer. Atterberg limits tests (ASTM D 4318) and particle size analyses (ASTM D 422) were performed on four selected samples from each boring. The results of these tests are presented on the Logs of Test Borings, and Tabulation of Test Data sheets attached to this report.

One-dimensional consolidation tests (ASTM D 2435) were performed on samples from Boring B-1 (ST-8 and ST-14). The results of these tests are attached to this report.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations, especially at previously developed sites such as this site. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering services during the site preparation, excavation, and foundation phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.0 PROPOSED CONSTRUCTION

We understand that it is planned to demolish the existing twin bridges located at milepost (MP) 34.2 of the James W. Shocknessy Ohio Turnpike (Interstate Route 90 [IR-90]), approximately ¹/₄ mile west of State Route (SR) 108, in Fulton County, Ohio. The bridges formerly served as an overpass over the Detroit, Toledo, and Ironton railroad, and the railroad has since been demolished. Prior to bridge demolition, grades below the bridges will be raised to match existing embankment grades. We further understand that this work will be phased to accommodate traffic as needed, and that the Ohio Turnpike Infrastructure Commission (OTIC) can accommodate construction over multiple years if needed to allow for settlement of the new embankment.

We further understand that the existing bridges are 3-span structures, with abutments on pile foundations and piers on shallow foundations. Spans 1 and 3 are indicated to be approximately 30 feet long, and the middle span (Span 2) is indicated to be approximately 39 feet long. Based on the as-built drawings, the abutment piles are indicated to be 10BP42 bearing piles (modern day HP10x42 H-piles) and have estimated lengths of 28 to 32 feet below Elev. 810.62, as well as 30 to 34 feet below Elevs. 815.86 and 815.62. From these lengths, these piles are anticipated to be predominantly friction piles driven to approximate Elevs. 786 to 779. The shallow pier foundations are indicated to bear at Elev. 787.

Existing grades below the bridges are on the order of Elev. 795 to 793. Grades along the bridges are on the order of Elev. 820. Approximately 25 to 27 feet of fill is anticipated to raise grades below the existing bridges to match roadway grade.

4.0 GENERAL SITE AND SUBSURFACE CONDITIONS

4.1 General Site Conditions

Existing grades below the bridges are on the order of Elev. 795 to 793. Grades along the bridges are on the order of Elev. 820.

The surface materials encountered in Borings B-1 and B-2 consisted of topsoil on the order of 12 inches thick.

4.2 <u>Site Geology</u>

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project site is located within the Maumee Sand Plains District of the Maumee Lake Plains Physiographic Region of Ohio. These regions include upper profile soils consisting of sands deposited in glacial lakes in the form of low dunes, beach ridges, and sand bars, as well as silty and clayey lacustrine deposits. The sands and lacustrine deposits are underlain by predominantly silty and clayey glacial till, before encountering bedrock.

Bedrock at the site is Silurian age, broadly mapped as the Olentangy shale formation. Based on available bedrock topography maps, the top of bedrock can be expected from Elevs. 600 to 580, approximately 195 to 205 feet below native soil grades, and approximately 220 to 240 feet below pavement grades.

The USDA Natural Resources Conservation Services (NRCS) Web Soil Survey indicates that soils in the project area are mapped as predominantly Blount-Rimer complex soils and Tedrow loamy fine sand, with areas of Ottokee-Glynwood complex soils to the west. The Blount-Rimer complex soils consist of till formed on flats or rises on end moraines or on ground moraines. These soils are considered somewhat poorly drained and have moderately low to moderately high permeability. The Tedrow fine sands formed in dunes or beach ridges on outwash plains or on lake plains, and consist of sandy glaciolacustrine deposits. These soils are considered somewhat poorly drained with high to very high permeabilities. The Ottokee-Glynwood complex soils formed in ridges or dunes on lake plains, and consist of eolian deposits. These soils are considered moderately well drained with high to very high permeabilities.

4.3 General Soil Conditions

Based on the results of our field and laboratory tests, the subsoils encountered underlying the topsoil can generally be characterized by a layer of native granular soils overlying a layer of cohesive glacial till. Additional descriptions of the soil stratigraphy encountered in the borings are presented on the Logs of Test Borings attached to the report.

Stratum I consisted of predominantly medium dense granular soils encountered underlying the topsoil in Borings B-1 and B-2 to depths of $12\frac{1}{2}$ feet and $14\frac{1}{2}$ feet below existing grades (approximate Elevs. 780 and 778), respectively. The granular soils consisted of coarse and fine sand (ODOT A-3a). SPT N₆₀-values typically varied between 12 to 23 blows per foot (bpf). Moisture contents of 7 percent and 11 percent were determined for samples obtained above encountered groundwater, and varied between 20 to 25 percent below it. These granular soils are generally considered incompressible.

Stratum II consisted of predominantly very stiff cohesive soils encountered underlying Stratum I in Borings B-1 and B-2 to depths of 23 feet and $28\frac{1}{2}$ feet (approximate Elevs. 769 and 764), respectively. The cohesive soils consisted of silt and clay (ODOT A-6a). SPT N₆₀-values ranged from 15 to 29 bpf. Unconfined compressive strengths generally ranged from 6,295 to 9,000 pounds per square foot (psf). Moisture contents ranged from 13 to 17 percent. Based correlations from moisture content results and Atterberg limits testing, these soils are considered overconsolidated and very slightly compressible.

Stratum III consisted of predominantly stiff cohesive glacial till deposits encountered underlying Stratum II in Borings B-1 and B-2. Stratum III was encountered to a depth 73 feet (approximate Elev. 719) in Boring B-2, and was encountered to a termination depth of 80 feet in Boring B-1. The Stratum III till deposits consisted of silt and clay (A-6a). SPT N₆₀-values generally ranged from 9 to 13 bpf. Unconfined compressive strengths ranged from approximately 2,000 to 4,000 psf. Moisture contents ranged from 17 to 19 percent. Based on the results of one-dimensional consolidation testing, these soils are considered overconsolidated and very slightly compressible.

Stratum IV consisted of **soft** to medium stiff cohesive glacial till deposits encountered underlying Stratum III to boring termination at a depth of 80 feet in Boring B-2. The Stratum II cohesive soils consisted of silt and clay (A-6a). SPT N_{60} -values ranged from of 5 bpf and 4 bpf and moisture contents of 20 percent and 21 percent were determined for the recovered samples. Unconfined compressive strengths were on the order of 1,000 psf. Based

correlations from moisture content results and Atterberg limits testing, these soils are considered overconsolidated and very slightly compressible.

4.4 **Groundwater Conditions**

Groundwater was initially encountered during drilling at depths of 3 feet and 6 feet below existing grades (approximate Elevs. 786 and 789) in Borings B-1 and B-2, respectively. Groundwater was not observed upon completion of drilling operations in either boring. It should be noted that each of the borings was drilled and backfilled within the same day. As such, stabilized water levels may not have occurred over this limited time period. Instrumentation was not installed to observe long-term groundwater levels. The groundwater conditions encountered in the borings are summarized in the following table.

	Table 4.4. E	Incountered	Groundwater (Conditions	
Boring	Approximate Ground	Grou Initially Durin	undwater Encountered 1g Drilling	Groundy Upon (Drillin	vater Observed Completion of g Operations
Number	Surface Elevation	Depth (feet)	Approximate Elevation (feet)	Depth (feet)	Approximate Elevation (feet)
B-1	644.9	3	786	N.E.	-
B-2	637.0	6	789	N.E.	-

N.E. – Not Encountered.

Based on the soil characteristics and groundwater conditions encountered in the borings, it is our opinion that the "normal" long-term groundwater table will be generally encountered at depths of approximately 3 feet or lower, corresponding to approximate Elev. 789 or deeper. However, groundwater elevations can fluctuate with seasonal and climatic influences. In particular, "perched" water may be encountered in fill materials or granular soils that are underlain by relatively impermeable cohesive soils. Therefore, the groundwater conditions may vary at different times of the year from those encountered during this investigation.

5.0 DESIGN RECOMMENDATIONS

The following conclusions and recommendations are based on our understanding of the proposed construction and the data obtained during our field investigation. If the project information or location as outlined is incorrect or should change significantly, a review of these recommendations should be made by TTL. These recommendations are subject to satisfactory completion of the recommended site and subgrade preparation and fill placement operations described in Section 6.0, "Construction Recommendations."

5.1 <u>New Embankment Fill</u>

Fill will be placed below the existing bridge to create a new embankment at the project location. Maximum fill heights are anticipated to be on the order of 25 to 28 feet.

For each of the encountered soil strata, soil compressibility parameters were evaluated for use in embankment settlement calculations. The compressibility parameters were evaluated using one-dimensional consolidation test results, as well as correlations with moisture contents and Atterberg limits test results. As discussed in Section 4.3, Stratum I contained granular soils which are generally considered incompressible, and Strata II, III, and IV contained cohesive soils which are very slightly compressible.

Settlement was evaluated based on maximum embankment fill heights and widths, assumed to match the existing embankments at the bridge structures. Existing grades below the bridges are on the order of Elev. 795 to 792. Grades along the bridges are on the order of Elev. 820. Maximum fill heights are anticipated to be on the order of 25 to 28 feet. Calculated settlements are summarized in the following table, and our calculations are attached to this report.

Т	Table 5.1. Calculated Settlements from New Embankment Fill													
Location	Calculated Total Settlement	Abutment/Pier Differential Settlement												
Abutments	1 to 2 inches	1 to 2 inches												
Piers	2 to 3 inches	1 to 2 literes												

The calculated settlements for the fill heights indicated above are not anticipated to be problematic for the proposed project. It should be noted that field observations of actual settlement generally tend to be less in magnitude than the theoretical calculated settlement.

Based on consolidation test results and correlations with soil index properties, as well as the indicated fill heights and range of compressible cohesive soil layer thicknesses, the time required to achieve 90 percent consolidation was generally calculated to be on the order of 6 to 10 weeks. Based on our experience in Northwest Ohio, the time required for 90 percent consolidation is anticipated to be toward the lower end of this range, likely on the order of 6 weeks. It should be noted for the embankment heights and settlement magnitudes indicated above, after 90 percent consolidation, the remaining foundation/embankment settlement would be less than ¹/₄ inch.

The estimated 6 to 10 weeks time rate of settlement is based on the "clock" starting at time t=0 when all of the fill is in place (in effect, assuming the surcharge load is applied instantly over the area). In reality, construction of the fill is expected to require one to two weeks (or more), so some of the consolidation and settlement will be initiated and occurring during the fill placement period, thereby shortening the post-fill-placement waiting period. For this reason, it is imperative that the planned settlement plates are installed and surveyed at the very beginning of surcharge fill placement.

It is our experience that wick drains are usually not cost-effective unless settlements are approaching 6 inches or more, and/or consolidation times are estimated to be on the order of 6 months to 1 year or greater. Therefore, based on calculated settlements of up to 3 inches and an estimated 2½ months of settlement, we do not recommend wick drains to accelerate settlement for this project.

5.1.1 Instrumentation

Piezometers are recommended to monitor settlement. The pore pressure data gathered from piezometers will provide information regarding settlement that has occurred during construction, as well as indicate if additional settlement may be expected well after construction has been completed.

Likewise, settlement platforms are also recommended for this project to monitor settlement as fill is placed.

Additional discussion regarding instrumentation is provided in Section 6.2.1 of this report.

5.1.2 Downdrag

Downdrag on the foundations due to settlement could result in additional loading on the exposed foundation elements in excess of 400 kips per pier. Therefore, we recommend protecting the exposed foundation elements from the effect of downdrag.

It was indicated by GPD Group that the exposed portions of the bridge substructures shall be isolated from the proposed fill by coating the portions of the abutments and piers that are above existing grade with low viscosity bituminous asphalt and then covering or wrapping those components with a durable thick plastic visqueen). Therefore, downdrag would not develop along the exposed portions.

The existing piles were driven to approximate Elevs. 786 to 779. Based on the encountered conditions, incompressible Stratum I granular soils were encountered to approximate Elevs. 778 and 780. Potential downdrag loads on piles due to settlement associated with the new embankment construction at the abutment locations was evaluated using the traditional method per AASHTO LRFD Bridge Design Specifications (BDS) Section 3.11.8. Downdrag was considered for portions of the pile within soil layers with calculated settlement of 0.4 inches or greater. Based on our settlement evaluations, for the thin layer of Stratum II very slightly compressible cohesive soils (1½ feet or less) that the existing piles may bear in (depending on variations from the provided drawings and/or any variations in the soil profile between borings), considerably less than 0.4 inches of settlement is expected in this zone due the new fill placement. Therefore, downdrag would not develop along the piles at the abutments.

5.2 Groundwater Control

As stated previously, groundwater was initially encountered during drilling at depths of 3 feet and 6 feet below existing grades (approximate Elevs. 786 and 789) in Borings B-1 and B-2, respectively.

Based on the soil and groundwater conditions encountered in the borings, it is our opinion that the "normal" long-term groundwater table will be generally encountered at depths of approximately 3 feet or lower, corresponding to approximate Elev. 789 or deeper. Therefore, construction planning should include potential remedial measures to be implemented where excessive groundwater seepage or unstable subgrades are encountered if excavations extend to approximate Elev. 789. Dewatering methods may include multiple sumps or a system of well points. The type of dewatering system utilized will depend on construction practices,

soil conditions encountered in the foundation excavations, seasonal conditions, and the depth of excavation. Additionally, the contractor will need to exercise diligence to control seepage and runoff to maintain a stable subgrade.

5.3 <u>Excavations and Slopes</u>

The sides of temporary excavations for construction should be adequately sloped to provide stable sides and safe working conditions. Otherwise, the excavation must be properly braced against lateral movements. In any case, applicable OSHA safety standards must be followed.

Based on the test borings, it is likely that excavations will encounter a range of soil conditions that include the following OSHA designations:

- Type A soils (cohesive soils with unconfined compressive strengths of 3,000 pounds per square foot (psf) or greater),
- Type B soils (cohesive soils with unconfined compressive strengths greater than 1,000 psf but less than 3,000 psf), and
- Type C soils (granular soils).

For temporary excavations in Type A, B, and C soils, side slopes must be no steeper than ³/₄ horizontal to 1 vertical (³/₄H:1V), 1H:1V, and 1¹/₂H:1V, respectively. For situations where a higher strength soil is underlain by a lower strength soil and the excavation extends into the lower strength soil, the slope of the entire excavation is governed by that required for the lower strength soil. In all cases, flatter slopes may be required if lower strength soils or adverse seepage conditions are encountered during construction.

For permanent excavations and slopes, we recommend that grades be no steeper than 3H:1V without a more extensive geotechnical evaluation of the proposed construction plans and site conditions.

New embankment slopes are anticipated to match existing embankment slopes which are indicated at 2 horizontal to 1 vertical (2H:1V). Regardless of overall global slope stability, slopes graded steeper than 3H:1V may be prone to shallow surface sloughing. This type of shallow sliding is generally <u>not</u> problematic (by itself), but left unchecked, it can lead to progressive slope movements that eventually impact overall performance of the embankment.

In addition to slope protection, such as well-established vegetative cover and rock-lined channels in surface run-off collection ditches and swales, we recommend that surface drainage from pavement areas on the crest of the embankment should be directed to catch basins or storm drains and not allowed to sheet flow over the slope.

6.0 CONSTRUCTION RECOMMENDATIONS

6.1 <u>Site Preparation</u>

Site preparation activities should include the removal of topsoil, root mats, vegetation, pavements, and other deleterious non-soil materials from all proposed construction areas. Suitable topsoil may be stockpiled for later use in landscaped areas. The actual amount of required stripping should be determined in the field by a geotechnical engineer or qualified representative.

6.2 <u>Embankment Construction for Replacement of Bridge Structures</u>

Prior to placement of fill, the exposed portions of the bridge substructures shall be isolated from the proposed fill by coating the portions of the abutments and piers that are above existing grade with low viscosity bituminous asphalt and then covering or wrapping those components with a durable thick plastic visqueen). Fill placement can then occur according to ODOT Item 840 as high as possible and deemed practical by the contractor under the existing bridge superstructures with special provisions as defined below. It has been assumed that this stage of fill placement will reach within 8 feet of the bottom of the existing bridge beams.

6.2.1 Instrumentation

Settlement platforms and vibrating wire piezometers shall be installed prior to beginning the placement of the backfill. Survey points at each substructure unit shall be established and monitored on a regular basis. Bridge structure ride-ablility criteria, in the form of differential settlement monitoring between spans, shall be established and monitored during all phases of embankment construction. The maximum differential settlement between spans shall be determined by the structural engineer, and all fill activities shall stop until settlement levels balance if differential settlement exceeds tolerances set by the structural engineer. The structural engineer may also elect to jack the bridge if differential settlement levels exceeds tolerances. After such an event, fill placement shall be limited theoretically to a maximum of two (2) compacted 8-inch lifts per day across the site. Fill placement limitation will be based on actual settlement monitoring. A fill settlement rate of 0.01 ft/day is acceptable.

TTL would be pleased to review construction plans to provide a recommendation on the quantity and locations of settlement platforms and piezometers.

Vibrating wire piezometers shall be installed per manufacturer instructions and specifications and per ODOT Geotechnical Bulletin 4 guidelines. The piezometers shall provide pore water pressure readings at about 5-foot intervals from 5 feet to 80 feet below existing grades (approximate Elevs. 787 to 712). The pore water pressure readings shall be reported to the project engineer on a daily basis. When pore water pressure is developed, record and report the values to the engineer for evaluation. If the pressures exceed acceptable levels (to be determined at a later date), or if settlement exceeds the anticipated 3 inches during fill placement, fill placement shall be suspended until pressures dissipate. In any case, TTL shall be notified to provide further guidance.

Likewise, settlement platforms are also recommended for this project to monitor settlement as fill is placed. Settlement platforms shall be fabricated and installed in general accordance with ASTM D 6598. We recommend that each platform be surveyed by the contractor's surveyor three times per week during fill operations and an average of once per week throughout the monitoring period. Surveys of the platforms will also need to be performed immediately prior to and immediately after installing extensions during fill placement activities. Each settlement monitor survey record should include a record of the top of fill elevation adjacent to the settlement monitor.

6.3 <u>Fill</u>

Material for engineered fill or backfill required to achieve design grades should meet ODOT Item 203 "Embankment Fill" placement and compaction requirements. In general, suitable fills may consist of any non-organic soils having a maximum dry density as determined by Supplement 1015 of 90 pounds per cubic foot (pcf) or greater. On-site soils may be used as engineered fill materials provided that they are free of organic matter, debris, excessive moisture, and rock or stone fragments larger than 3 inches in diameter. Depending on seasonal conditions, the on-site soils may be wet of optimum and may require scarification and aeration to achieve satisfactory compaction. If the construction schedule does not allow for scarification and aeration activities, it may be more practical or economical to utilize imported granular fill.

Fill should be placed in uniform layers not more than 8 inches thick (loose measure) and adequately keyed into stripped and scarified soils. All fill placed within pavement areas should be compacted to a dry density consistent with the requirements of ODOT Item 203, based on the maximum dry density as determined by Supplement 1015.

Fill placement shall be performed as symmetrical as possible across the entire site to prevent lateral stresses from developing on the existing bridge piers and their foundation components. Compaction of the new fill placement around the existing bridge piers and abutments shall be accomplished through the use of portable compaction equipment (hand operated tampers or other equipment approved by the engineer). Furthermore, it is recommended to that self-propelled heavy compaction equipment be kept at least 5 feet away from the existing substructure elements.

The on-site soils consist of native granular and cohesive soils. For the cohesive soils, a sheepsfoot roller should provide the most effective soil compaction. For granular soils, or if new granular engineered fill is placed, a vibratory smooth-drum roller would be required to provide effective compaction.

Scarified subgrade soils and all fill material should be within 3 percent of the optimum moisture content to facilitate compaction. Furthermore, fill material should not be frozen or placed on a frozen base. It is recommended that all earthwork and site preparation activities be conducted under adequate specifications and properly monitored in the field by a qualified geotechnical testing firm.

7.0 QUALIFICATIONS OF RECOMMENDATIONS

Our evaluation of construction conditions for embankment fill placement has been based on our understanding of the site and project information and the data obtained during our field investigation. The general subsurface conditions were based on interpretation of the subsurface data at specific boring locations. Regardless of the thoroughness of a subsurface investigation, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. Therefore, experienced geotechnical engineers should observe earthwork and foundation construction to confirm that the conditions anticipated in design are noted. Otherwise, TTL assumes no responsibility for construction compliance with the design concepts, specifications, or recommendations.

The evaluations and recommendations presented in this report have been formulated on the basis of reported or assumed data relating to the location and finished grades for the proposed structure. Any significant change in this data in the final design plans should be brought to our attention for review and evaluation with respect to the prevailing subsoil conditions.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.

Our professional services have been performed and our findings have been derived in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TTL is not responsible for the conclusions, opinions, or recommendations of others based on this data.

	PROJECT	T: OTIC MP 34.2 BRIDGE DEMO.	DRILLING FIRM / OPER	ATOR:				L RIG	:	CME 550>	(ATV		STAT	ION	/ OF	FSE	Г:				EXPLOR	ATION ID
		BRIDGE REPLACEMENT	SAMPLING FIRM / LOGO	3ER:		KC		MER:				;			NI: אר	702 (21.) 6		Q(0 #	PAGE
	START	BR ID 11/2/17 END: 11/2/17	SAMPLING METHOD.	3	<u>SPT / ST</u>			BRAT RGY F		(%) [.]	80.3				אור. ואו.	192.0		Not F	EUD. Recor	no ded	<u>J.U II.</u>	1 OF 3
	01/111			EL EV							<u>ир</u>				NI /0/	()	ΔΤΤ	EDB				DACK
		AND NOTES		792.0	DEPT	HS	RQD	N ₆₀	(%)		(tsf)	GR	cs	FS	si si	CL		PL	PI	wc	CLASS (GI)	FILL
	TOPSOI	L - 12 INCHES		792.0		L _			(/0)		()	-										
		DENSE BROWN COARSE AND		791.0	_	- 1 -	3															- 8300 4
	LITTLE	SILT AND TRACE CLAY, MOIST				- 2 -	⁴ -	12	78	SS-1	NP	-	-	-	-	-	-	-	-	11	A-3a (V)	
			• • • • • • • • • • • • • • • • •		W		5															
	@3': WE	T, SOME SILT, (FREE WATER N	OTED IN JAR)				3															R > A
			••••••			4 -	4	12	89	SS-2	NP	-	-	-	-	-	-	-	-	21	A-3a (V)	
			• • • • • • • • • • • • • • • • • • •			- 5 -	5															
			•*••*• •*•••			6 -	2															-15-17
	@6::(FR	EE WATER NOTED IN JAR)	•• ••• ••				3 4	12	89	SS-3	NP	-	-	-	-	-	-	-	-	23	A-3a (V)	ALL ALL
							5														. ,	
			******* ******************************			8 -																7- 42 R>1000
						- 9 -	6 8	23	100	SS-4	NP	0	1	66	32	1	NP	NP	NP	25	A-3a (0)	A CED 1 Le
٦	@9.6': G	RAY/BROWN, (FREE WATER NOTED IN JAR)				- 10 -	9	_														
GP.	-																					SSP 200
7.0																						7-0 7 6
1580				779.5		- 12 -																S S S S
CTS	VERY S	TIFF, BROWN/GRAY, SILT AND C ND TRACE GRAVEL MOIST	CLAY , LITTLE			- 13 -																7 > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
OJEC		ND TIACE STAVEL, MOIST				- 14 -	4 7	23	78	SS-5	3 15*	6	6	12	21	55	27	13	14	15	$A_{-62}(10)$	
\PR(L 15	<u> </u>	20	10		5.15	Ŭ	Ŭ	12	21	55	21	15	14	15	A-0a (10)	4790 < 2 4770 < 2
S - S																						4 - AL
16:26						- 16 -																
117	@17': GI	RAY				17 -																17 × 17
1/30	0					- 18																N > T
T - 1						- 19 -	6		100	00.0	1.00									45	A 0 - 0.0	
GD.						- 20	9 13	29	100	55-6	4.00	-	-	-	-	-	-	-	-	15	А-6а (V)	
DO						- 20 -																121 12
HO						21 -																THE THE
11) -						- 22 -																
.5 X				769.0	_	- 23 -																74 42
G (8	TRACE (GRAVEL MOIST	AND AND			24	3															- Seller 1 4
9 LO	110102					- 24	4	13	100	SS-7	1.75	-	-	-	-	-	-	-	-	18	A-6a (V)	
RING						25																- 7 Lage
BO						26																The 16
SOIL						- 27 -			88	ST-8	2.12*	7	5	7	20	61	30	15	15	17	A-6a (10)	S S S S
DT :						L 28																
00							3					-				-	-	-				
ARI						- 29 -	3	9	100	SS-9	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)	< 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
LANE						30	4															- ASAN F
S					1																	X, AURIA

PID:	BR ID:	PROJECT:OTIC MP 34.2	BRIDGE	E DEMO STATION / OFFSET:						S	TART	: 11/	2/17	E	ND:	11/2	2/17	P	G 2 O	F 3	B-1
	MATERIAL DESCRIP	TION	ELEV.		-110	SPT/	NI	REC	SAMPLE	HP	G	RAD	ΑΤΙΟ	N (%)	ATT	ERB	ERG		ODOT	BACK
	AND NOTES		761.0	DEPI	нэ	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
STIFF, GRAY, TRACE GRAV @32': SOME S	SILT AND CLAY, LITTLE S EL, MOIST <i>(continued)</i> SAND	AND AND			- 	-															
						2 3 5	11	100	SS-10	1.50	-	-	-	-	-	-	-	-	17	A-6a (V)	
@38 ^{1.} LITTLE 5	SAND					- - - -															
Good En Ince					- 39 - - 40 -	2 3 6	12	100	SS-11	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)	
					- 41 - - 42 - - 43 -																
					44 - 45 -	3 4 6	13	100	SS-12	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)	
					- 46 - - 47 - - 48 -																
					- 49 - - 50 -	2 4 6	13	100	SS-13	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)	
@51': VERY S	TIFF				- 51 - - 52 - - 53 -			100	ST-14	2.20*	6	3	10	19	62	29	16	13	17	A-6a (9)	
@53.5': STIFF					- 54 -	3 4 6	13	100	SS-15	1.75	-	-	-	-	-	-	-	-	18	A-6a (V)	
					56																
					- 58 - - 59 - - 60 -	3 4 6	13	100	SS-16	1.75	-	-	-	-	-	-	-	-	18	A-6a (V)	
					- 61 - - 62 - - 63 -	2															

PID:	BR ID:	PROJECT:OTIC MP 34.2	BRIDGE	DEMO STATION	/ OFFSI	ET:			S	TAR	r: <u>1</u> 1	/2/17	EI	ND:	11/	2/17	_ P	G 3 O	F 3	B-1
	MATERIAL DESCRIP	TION	ELEV.		SPT/	N	REC	SAMPLE	HP		GRAD	ATIC)N (%	6)	ATT	ERB	ERG		ODOT	BACK
	AND NOTES		727.8	DEPTHS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
STIFF, GRAY,	SILT AND CLAY, LITTLE S	SAND AND		- 65	4 6	13	100	SS-17	1.75	-	-	-	-	-	-	-	-	18	A-6a (V)	A Lad
TRACE GRAV	EL, MOIST (continued)				ŢŸ															
				- 66 -	-															and and
				67 -																
					-															N > Color
				- 68 -																20x0<0
				- 69 -	3	12	100	SS 19	1 50	5	1	0	20	62	20	15	12	10	A 62 (0)	2
				- 70	45	12	100	33-10	1.50	1	4	9	20	02	20		13		A-0a (9)	The state
				- 71 -	-															ALL IN
				- 72 -																AND ST
					-															2> Nates
				73 -																Jack - L
@73.5': MEDIL	JM STIFF TO STIFF			- 74 -	1	11	100	SS 10	0.01*									17	A 62 00	
				- 75	5		100	33-19	0.91	-	-	-	-	-	-	-	-	''	A-0a (V)	A Langing
																				New March
				- 76 -	-															NOD 1X
				- 77 -																En all
					-															
				- 78 -																111
@78.5': STIFF				- 79 -	2	11	100	SS-20	1 25	_	_	_	_	-	- I	-	_	18	A-6a (V)	
			712.0		5		100	00 20	1.20									10	// 04 (V)	CARDON 9
				200 00																
NOTES: "*" -	UNCONFINED STRENGTH	I DETERMINED BY ASTM	D 2166.	"NP" - NON PLAS	TIC															
ABANDONME	NT METHODS, MATERIAL	S, QUANTITIES: AUGER	CUTTIN	GS MIXED WITH 4	BAGS	BENT	ONITE	E CHIPS												

	PROJEC	T: OTIC MP 34.2 BRIDGE DEMO.	DRILLING FIRM / OPER	PERATOR: TTL / TB					:((ATV	<u>, </u>	STA		/ OF	FSET	Г:				EXPLOR	ATION ID -2
		BRIDGE REI EAGEMENT	DRILLING METHOD	3	25" HSA	10		BRAT			1/10/17	7	FI F			792 (0 (MS	SL) F	=OB·	8	0 0 ft	PAGE
	START:	10/31/17 END: 10/31/17	SAMPLING METHOD:		SPT / ST			RGY F	RATIO	(%):	80.3		LAT	/ LON	NG:	102.0		Not I	Recor	ded	<u></u>	1 OF 3
				FLEV			SPT/	-	REC	SAMPLE	HP		GRAD	ATIC)N (%	<u>(</u>)	ΑΤΤ	FRB	FRG			BACK
		AND NOTES		792.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
	TOPSO	L - 12 INCHES	\sum	701.0																		SP S
	MEDIUN	DENSE, BROWN, COARSE AND	FINE SAND.	791.0	-		2															ABANA I V III
	LITTLE	SILT, TRACE CLAY, AND GRAVE	L, MOIST			- 2 -	4	13	78	SS-1	NP	-	-	-	-	-	-	-	-	7	A-3a (V)	121 35
			• • • • • • • • • • • • • • • • • •			- 3 -	<u> </u>															TE TE
						- ĭ	3															R > A
	@4': WE	ET (FREE WATER NOTED IN JAR)			- 4 -	ັ 5	21	100	SS-2	NP	1	3	76	19	1	NP	NP	NP	20	A-3a (0)	a Lat
						- 5 -																A L'AL
	DENOE			786.0	W	- 6 -	10															12112
	AND TR	ACE GRAVEL WET (EREE WATE	ND, LITTLE SILT				15	41	100	SS-3	NP	-	-	-	-	-	-	-	-	22	A-3a (V)	The second
				784.0		⊢ ′ ∎	16														. ,	
	MEDIUN					8 -																74 40
	LITTLE	LE SILT AND TRACE GRAVEL, WET (FREE WATER ED IN JAR)				- 9 -	8	23	100	SS-4	NP	_	- I	_	_	_	_	_	_	20	A-3a (\/)	Jan 1 4
_	NOTED	TED IN JAR)					<u>9</u>		100												// 04 (1)	
Ð.																						SSP ST
7.01						F 11 -																7-6 16
580	@12': G	RAY	**************************************			- 12 -																NOD VX
TS/1	0					- 13	-															9 and 1
UEC			• • • • • • • • • • •			- 14 -	4															TL TE
PRO	STIFE (CRAY SILT AND CLAY SOME SA		///.5			5	15	89	SS-5	1.75	-	-	-	-	-	-	-	-	1/	A-6a (V)	AN 12
- S:\	GRAVE	L, MOIST		1		- 15 -																A L AL
5:27						- 16 -																A ALE
7 16				774 5		- 17 -			88	ST-6	1.44*	20	7	15	20	38	25	14	11	15	A-6a (5)	1>1
/30/1	VERY S	TIFF TO HARD. GRAY. SILT AND	CLAY, LITTLE	114.0	-	- 18 -																TETE
+	SAND A	ND TRACE GRAVEL, DAMP					5															
102						- 19 -	9	28	100	SS-7	4.50	-	-	-	-	-	-	-	-	13	A-6a (V)	
01.C						- 20 -	12															J L apl
DH						- 21 -																17-17
0 - (770.0																		
X 11	STIFF T	O VERY STIFF, GRAY, SILT AND	CLAY, LITTLE			- 22 -																Fur ada
(8.5	SAND A	ND TRACE GRAVEL, MOIST				23 -																
ЮÖ						- 24 -	3	19	100	SS-8	1 65*	_	- I	_	_	_	_	_	_	17	A-6a (\/)	A A A A
Ъ				1		L 25	8		100	000	1.00										// 04 (V)	à Natani
JRIN							1															
L B(1		- 26 -]															100 16
SO						27 -																Salar a
DOT				763 5		- 28 -	-															
Ō	MEDIUN	I STIFF TO STIFF, GRAY, SILT A	ND CLAY,		1	29	4		400	00.0	0.01		6	4.5	0.0	a :		1	4-	4.2		
DAR	LITTLE	SAND AND TRACE GRAVEL, MO	IST	1			4	11	100	55-9	0.94*	3	3	10	20	64	30	15	15	19	A-6a (10)	SEP <
TAN						- 30 -																ASSAN &
Ś			<pre> \///.</pre>	4	1	1	1				1					1						- Augult

ſ	PID:	BR ID:	PROJECT:OTIC MP 34.2	ON / OF	FFSET:				S	TART	: 10/	31/1	7 EI	ND:	10/3	31/17	P	G 2 O	F 3	B-2		
ſ		MATERIAL DESCRIPT	TION	ELEV.		SI	PT/	F	REC	SAMPLE	HP	G	RAD	ATIC)N (%	6)	ATT	ERBI	ERG		ODOT	BACK
		AND NOTES		761.0	DEFTHS	R	QD 1	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI	FILL
				760.0	F																	A Las
	STIFF, GRAY,	SILT AND CLAY, LITTLE SA	AND AND		- 32	2																R ALL
	TRACE GRAVE	EL, MOIST			- 3	3 —																7-1-
					- 34	4 – 3	1	2.	100	SS 10	1 25									17	A 62 (V/)	
					- 3	5	4 <u>5</u>		100	33-10	1.25	-	-	-	-	-	-	-	-	17	A-0a (V)	
						. –																AL AL
					- 30	5 <u> </u>																€ LV EL
					- 3	7 –																171 17
					- 3	8 –																J- J-
					- 3	a _ 2																- AUX AL
							4 1	2 '	100	SS-11	1.00	-	-	-	-	-	-	-	-	19	A-6a (V)	
					- 4																	- A CONTRACT
					- 4	1 –																à Nation
					- 42	2 —																The state
					- 4	3 –																76012
GPJ						2		+														-
.01					- 4	+	4 1	3 '	100	SS-12	1.00	-	-	-	-	-	-	-	-	19	A-6a (V)	and the second
5807					- 4	5 –																- 7 L - 7 K
TS/1					- 4	6 -		+														- A L and
UEC.					- 4'	7 -		.	100	ST-13	1.63*	3	4	9	21	63	30	15	15	18	A-6a (10) ~ , ~
PRO					- 4	s Ι																1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
- S:\					-	3		-														
6:27					- 4		4 1	2 '	100	SS-14	1.25	-	-	-	-	-	-	-	-	18	A-6a (V)	
171					5			-														
1/30/					- 5	1																J L' AL
÷					- 5	2 –																X X
GD					5	2																
DOT								+														- Fact and
ЧН					5·	4 – – [–]	4 _ 1	2 '	100	SS-15	1.00	-	-	-	-	-	-	-	-	19	A-6a (V)	
- (1					5	5 –																- HARRIS
5 X 1					- 5	6 —																A Varan
3 (8.					5	7 _																Torr with
ГŐ																						190 JX
SING					- 5			_														42574
BOF					- 5	9 – ¹ °	4 1	2 ·	100	SS-16	1.00	-	-	-	-	-	-	-	-	19	A-6a (V)	T > TUNK
20IL					- 6	o Щ		_													. ,	
OT S					F-6	1 –																A Las
Ō						<u>_</u>																A ALEIA
ARD					F o																	3-1-
AND.					6	3 –																
ST,				1	6	4_1																

PID:	BR ID:	PROJECT:OTIC MP 34.2	BRIDGE	DEMO STA	TION	/ OFFSE	ET:			S	TART	: 10/	31/17	Z EI	ND:	10/3	1/17	_ P	G 3 O	F 3	B-2
	MATERIAL DESCRIP	TION	ELEV.	DEPTH	19	SPT/	N	REC	SAMPLE	HP		RAD	ATIO	N (%	b)	ATT	ERB	ERG		ODOT	BACK
	AND NOTES		727.8			RQD	1160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
TRACE GRAV	, SILT AND CLAY , LITTLE S (FL_MOIST (continued)	SAND AND			- 65 _	5	11	100	33-17	1.00	-	-	-	-	-	-	-	-	17	A-0a (V)	A Land
					- 66 -																K FEL
					- 00 -																4>1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					- 67 -																TETE
					- 68 -	-															
					- 69 -	1	44	100	00.40	4 00									47	A 0 - 0.0	22 42
				-	- 70	3 5	11	100	55-18	1.00	-	-	-	-	-	-	-	-	17	A-6a (V)	JL Capl
					- 70 -																
					- 71 -																
					- 72 -	-															Fait ante
			719.0		- 73 -																
SOFT TO MEL	DIUM STIFF, GRAY, SILT A	ND CLAY, LITTLE		-	- 	0															HAMAS S
SAND AND TH	RACE GRAVEL, MOIST				- 74 -	ٽ 1	5	100	SS-19	0.50	-	-	-	-	-	-	-	-	20	A-6a (V)	A Nation
				-	- 75 -	3															
					- 76 -																100 12
					 - 77 -																Sala a
						-															
					- /8 - I																1-1-
					- 79 -	1	4	100	SS-20	0.50	3	6	12	22	57	30	15	15	21	A-6a (10)	A Lad
			/12.0	EOB	-80-	2															ABOD 9
NOTES: "*" -	UNCONFINED STRENGT	H DETERMINED BY ASTM	D 2166. '	'NP" - NON	PLAST	ΓIC															
ABANDONME	INT METHODS, MATERIAL	S, QUANTITIES: AUGER	CUTTING	<u>GS MIXED V</u>	<u>VITH 4</u>	BAGS	BENT	ONITE	CHIPS												

PROJECT: C	PROJECT: OTIC MP 34.2 Bridge Demolition, Fulton County, OH				unty, OH	TTL Associates, Inc.]	PROJECT NO: 15807.01					
						TABUI	LATION	OF	TES	T DA	ТА						
			ion , N _m	on, N ₆₀		ength		ength			Particle Size Distribution (%)			Atterberg Limits (%)			
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrat (Blows per Fool)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)	In-Place Dry Density (Pounds per Cubic Foot)	Unconfined Compressive St (Pounds per Square Foot)		Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-1	SS-1	1.0-2.5	9	12	10.9												
	SS-2	3.5-5.0	9	12	21.2												
	SS-3	6.0-7.5	9	12	23.1												
	SS-4	8.5-10.0	17	23	24.7												
	SS-5	13.5-15.0	17	23	14.6	115.7	*6,295										
	SS-6	18.5-20.0	22	29	15.1		8,000										
	SS-7	23.5-25.0	10	13	17.5		3,500										
	ST-8	26.0-28.0			17.1	116.7	*4,250										
	SS-9	28.5-30.0	7	9	18.4		3,000										
	SS-10	33.5-35.0	8	11	16.5		3,000										
	SS-11	38.5-40.0	9	12	18.1		3,000										
	SS-12	43.5-45.0	10	13	18.1		3,000										
	SS-13	48.5-50.0	10	13	18.0		3,000										
	ST-14	51.0-53.0			17.2	112.7	*4,395										
	SS-15	53.5-55.0	10	13	18.1		3,500										
	SS-16	58.5-60.0	10	13	17.5		3,500										

PROJECT: C	PROJECT: OTIC MP 34.2 Bridge Demolition, Fulton County, OH				unty, OH	TTL Associates, Inc.]	PROJECT NO: 15807.01				
						TABUI	LATION	OF	TES	ΓDA	ТА						
			ion , N _m	on, N ₆₀		In-Place Dry Density (Pounds per Cubic Foot) Unconfined Compressive Strength (Pounds per Square Foot)			Particle Size Distribution (%)				Atterberg Limits (%)				
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrat (Blows per Fool)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)		Unconfined Compressive St (Pounds per Square Foot)		Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-1	SS-17	63.5-65.0	10	13	17.8		3,500										
	SS-18	68.5-70.0	9	12	17.8		3,000										
	SS-19	73.5-75.0	8	11	17.0	105.3	*1,815										
	SS-20	78.5-80.0	8	11	18.3		2,500										
B-2	SS-1	1.0-2.5	10	13	7.1												
	SS-2	3.5-5.0	16	21	20.3				1	3	76	19	1	NO	N-PLAS	STIC	A-3a (0)
	SS-3	6.0-7.5	31	41	21.8												
	SS-4	8.5-10.0	17	23	20.2												
	SS-5	13.5-15.0	11	15	16.7		3,500										
	ST-6	16.0-18.0			14.8	117.6	*2,875		20	7	15	20	38	25	14	11	A-6a (5)
	SS-7	18.5-20.0	21	28	13.2		9,000										
	SS-8	23.5-25.0	14	19	16.9	111.6	*3,305										
	SS-9	28.5-30.0	8	11	18.5	103.1	*1,885		3	3	10	20	64	30	15	15	A-6a (10)
	SS-10	33.5-35.0	9	12	17.4		2,500										
	SS-11	38.5-40.0	9	12	18.5		2,000										

PROJECT: C	PROJECT: OTIC MP 34.2 Bridge Demolition, Fulton County, OH				unty, OH	TTL Associates, Inc.]	PROJECT NO: 15807.01				
						TABUI	TABULATION OF TEST DATA										
			ion , N _m	on, N ₆₀			ength			Particle Size Distribution (%)				Atterberg Limits (%)			
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrati (Blows per Fool)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)	In-Place Dry Density (Pounds per Cubic Foot)	Unconfined Compressive St (Pounds per Square Foot)		Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-2	SS-12	43.5-45.0	10	13	18.6		2,000										
	ST-13	46.0-48.0			18.0	111.0	*3,250		3	4	9	21	63	30	15	15	A-6a (10)
	SS-14	48.5-50.0	9	12	17.6		2,500										
	SS-15	53.5-55.0	9	12	18.5		2,000										
	SS-16	58.5-60.0	9	12	19.0		2,000										
	SS-17	63.5-65.0	8	11	17.3		2,000										
	SS-18	68.5-70.0	8	11	17.4		2,000										
	SS-19	73.5-75.0	4	5	19.7		1,000										
	SS-20	78.5-80.0	3	4	20.5		1,000		3	6	12	22	57	30	15	15	A-6a (10)

Project No.:	15807.01
Date:	11/10/2017
Client:	GPD Group
Project:	OTIC MP 34.2 Bridge Demolition
	Wauseon, Fulton County, Ohio
Boring No.:	B-1
Sample No.:	ST-8
Depth:	26.0 to 28.0 feet

TTL.

Project No.:15807.01Date:11/10/2017Client:GPD GroupProject:OTIC MP 34.2 Bridge Demolition
Wauseon, Fulton County, OhioBoring No.:B-1Sample No.:ST-8Depth:26.0 to 28.0 feet

1.011

inches

Initial H=

Pressure	Final	Initial		Average					
tsf	Height	Height	DH	Н	е	t ₅₀ (min)	Ave P	Cv (in2/s)	Cv (ft2/d)
0.25	1.00270	1.01100	0.00830	1.0069	0.468	6.8	0.125	0.000122	0.073
0.5	0.99740	1.00270	0.01360	1.0001	0.461	3.4	0.375	0.000241	0.145
1	0.98790	0.99740	0.02310	0.9927	0.447	5.0	0.75	0.000162	0.097
2	0.97780	0.98790	0.03320	0.9829	0.432	4.0	1.5	0.000198	0.119
4	0.96100	0.97780	0.05000	0.9694	0.407	3.1	3	0.000249	0.149
8	0.94300	0.96100	0.06800	0.9520	0.381	3.1	6	0.000240	0.144
16	0.91740	0.94300	0.09360	0.9302	0.343	3.0	12	0.000237	0.142
4	0.92305	0.91740	0.08795	0.9202	0.352		10		
1	0.93460	0.92305	0.07640	0.9288	0.369		2.5		
0.25	0.95260	0.93460	0.05840	0.9436	0.395		0.625		

Estimated Cc:	0).125			
Estimated Cr:	C).029			
Soil Description:	Gray SI	LT and Cl	LAY with	Little Sand and Trace Grave	el A-6a (10)
Specific Gravity:	2.68				()
Liquid Limit:	30				
Plastic Limit:	15				
Plasticity Index:	15				
initial Water Content:		186%		Final Water Content:	17 0 %
Inital Dry Density:	1	13.1 pcf		Final Dry Density:	120.0 pcf
Initial Void Ratio:		10.1 por		Final Void Ratio:	0.305
Initial Degree of Saturation:	1	036%		Final Dograp of Saturation	115 / 0/
initial Degree of Gatalation.	'	00.0 70		i nai Degree of Saturation	115.4 70

Estimated Preconsolidation Pressure: 3.6 tsf

The sample for the test was trimmed from a Shelby tube sample using a cutting shoe. Test Method B was used with the specimen inundated during testing. Coefficients of consolidation were computed by log of time method.

Consolidation Laboratory Calculations

Consolidometer:	1			
Method: Project No. : Client: Project: Location: Boring No. : Sample No.: Depth: Date of Test:	ASTM D 2435 Method B 15807.01 GPD Group OTIC MP 34.2 Bridge Demolition Wauseon, Fulton County, Ohio B-1 ST-8 26.0 to 28.0 feet 11/10/2017	Visual Description: Liquid Limit: Plastic Limit: Plasticity Index:	Gray SILT and CLAY with L 30 % 15 % 15 %	ittle Sand and Trace Gravel A-6a (10)
<i>Initial Sample Data</i> Initial Height Ring Dia. Area of Ring Initial Volume Specific Gravity		<i>Final Sample Data</i> Final Height Ring Dia. Area of Ring Final Volume	0.953 in. 2.493 in. 4.8813 in ² 4.6499 in ³	<u>0.00269</u> ft ³
Initial wet mass soil & ring Mass of ring Initial wet mass soil	<u>320.3 g</u> <u>146.6 g</u> <u>173.7 g</u> <u>0.38294</u> lb	Final wet mass soil, pan & ring Wt of Pan Final wet mass soil & ring Mass of ring Final dry mass of soil, pan & ring Final wet mass soil Weight of water	368.1 g 50.1 g 318.0 146.6 g 343.2 g 171.4 g 24.9 g	0.37787 lb 0.05490 lb
Initial Water Content Mass can & wet soil Mass can & dry soil Mass of can Mass of water Mass of soil Initial water content	297.8 g 258 g 40.4 g 39.8 g 217.6 g 18.29 % (trimmings)			
Initial water content	18.57 % (based on final dry weight)	Final water content	<u>17.00</u> % (based on f	inal dry weight)
Initial dry density	113.1 pcf	Final weight of solids (Md) Final dry density Final volume of solids (Vs) Final height of solids (Hs)	146.5 g 120.0 pcf 3.3332 in ³ 0.6829 in.	0.32298 lb 0.00193 ft ³
Initial void ratio (eo) Initial volume of voids (Vvo) Initial volume of water (Vwo) Initial degree of saturation (So)		Final void ratio (ef) Final volume of voids (Vvf) Final volume of water (Vwf) Final degree of saturation (Sf)	0.395 1.3167 in ³ 1.5194 in ³ 115.40 %	$\frac{0.00076}{0.00088} \text{ ft}^3$

F	roject No. :	15807.01	S	Sample No.:	ST-8	
l	Boring No. : I	3-1		Depth:	26.0 to 28.	0 feet
						Do=D1-(D2-D1)
	0.5 ton Load	ł				1) 0.25 to 1.0: 0.00025
						2) 0.5 to 2.0: 0.00040
in	itial height=	1.0027	inches			3) 1.0 to 4.0: 0.00065
						Do Avg 1&2: 0.00033
Interval	Dial		Deformation	TRUE	Height of	Do Avg 1-3: 0.00043
Minutes	Reading	ΔH	Constant	ΔH	Sample	D100= 0.00355
0	0.38400					D50=D100+0.5(Do-D100)
0.25	0.38320	0.00080	0.00000	0.00080	1.00190	D = 0 para 1
0.5	0.38300	0.00100	0.00000	0.00100	1.00170	50-0.00194
1	0.38265	0.00135	0.00000	0.00135	1.00135	
2	0.38240	0.00160	0.00000	0.00160	1.00110	
4	0.38195	0.00205	0.00000	0.00205	1.00065	
9	0.38120	0.00280	0.00000	0.00280	0.99990	
16	0.38050	0.00350	0.00000	0.00350	0.99920	
25	0.38020	0.00380	0.00000	0.00380	0.99890	
30	0.38005	0.00395	0.00000	0.00395	0.99875	
60	0.37950	0.00450	0.00000	0.00450	0.99820	
120	0.37920	0.00480	0.00000	0.00480	0.99790	
180	0.37890	0.00510	0.00000	0.00510	0.99760	
240	0.37870	0.00530	0.00000	0.00530	0.99740	

Project No. : 15807.01 Sample No.: ST-8 Boring No. : B-1 Depth: 26.0 to 28.0 feet Do=D1-(D2-D1) 1.0 ton Load 1) 0.25 to 1.0: -0.00020 (2) 0.5 to 2.0: 0.00005 initial height= 0.9974 inches 3) 1.0 to 4.0: 0.00020 Do Avg 1&2: -0.00008 Interval Dial Deformation TRUE Height of Do Avg 1-3: 0.00002 **Minutes** Reading ΔH Constant ΔH Sample D100= 0.0076 0 0.37870 D50=D100+0.5(Do-D100) 0.25 0.37600 0.00270 0.00190 0.00080 0.99660 D50 - 0,003825 0.5 0.37555 0.00315 0.00190 0.00125 0.99615 1 0.37500 0.00370 0.00190 0.00180 0.99560 2 0.37435 0.00435 0.00190 0.00245 0.99495 4 0.37340 0.00530 0.00190 0.00340 0.99400 9 0.37190 0.00680 0.00190 0.00490 0.99250 16 0.37100 0.00770 0.00190 0.00580 0.99160 25 0.37030 0.00840 0.00190 0.00650 0.99090 30 0.37000 0.00870 0.00190 0.00680 0.99060 60 0.36910 0.00960 0.00190 0.00770 0.98970 120 0.36855 0.01015 0.00190 0.00825 0.98915 180 0.36835 0.01035 0.00190 0.00845 0.98895 240 0.36820 0.01050 0.00190 0.00860 0.98880 1175 0.36730 0.01140 0.00190 0.00950 0.98790 0.00000 0.00100 0.00200 Deformation (inches) 0.00300 0.00400 0.00500 0.00600 0.00700 D100=0.0076 0.00800 0.00900 0.01000 0.1 10 100 1000 1 10000 t50 = 5.0 min Log Time (min.)

Project No. : 15807.01 Sample No.: ST-8 Boring No. : B-1 Depth: 26.0 to 28.0 feet Do=D1-(D2-D1) 2.0 ton Load 1) 0.25 to 1.0: -0.00030 2) 0.5 to 2.0: -0.00015 initial height= 0.9879 inches 3) 1.0 to 4.0: 0.00020-Do Avg 1&2: -0.00023 Interval Dial Deformation TRUE Height of Do Avg 1-3: -0.00008 Minutes Reading ΔH Constant ΔH Sample D100= 0,009 0 0.36730 D50=D100+0.5(Do-D100) 0.25 0.36425 0.00305 0.00200 0.00105 0.98685 D 50 = 0.0046 0.5 0.36370 0.00360 0.00200 0.00160 0.98630 1 0.36290 0.00440 0.00200 0.00240 0.98550 2 0.36195 0.00535 0.00200 0.00335 0.98455 4 0.36070 0.00660 0.00200 0.00460 0.98330 9 0.35915 0.00815 0.00200 0.00615 0.98175 16 0.35800 0.00930 0.00200 0.00730 0.98060 25 0.35710 0.01020 0.00200 0.00820 0.97970 30 0.35690 0.01040 0.00200 0.00840 0.97950 60 0.35615 0.01115 0.00200 0.00915 0.97875 120 0.35560 0.01170 0.00200 0.00970 0.97820 180 0.35535 0.01195 0.00200 0.00995 0.97795 240 0.35520 0.01210 0.00200 0.01010 0.97780

TTL.

Project No. : 15807.01 Sample No.: ST-8 Boring No. : B-1 Depth: 26.0 to 28.0 feet Do=D1-(D2-D1) 4.0 ton Load (1) 0.25 to 1.0: 0.00070 2) 0.5 to 2.0: 0.00090 initial height= 0.9778 inches 3) 1.0 to 4.0: 0.00120 Do Avg 1&2: 0.00080 Interval Dial Deformation TRUE **Height of** Do Avg 1-3: 0.00093 **Minutes** Reading ΔH Constant ΔH Sample D100= 0.0139 0 0.35520 D50=D100+0.5(Do-D100) 0.25 0.35090 0.00430 0.00180 0.00250 0.97530 D50 = 0,0069 0.5 0.35010 0.00510 0.00180 0.00330 0.97450 1 0.34910 0.00610 0.00180 0.00430 0.97350 2 0.34770 0.00750 0.00180 0.00570 0.97210 4 0.34600 0.00920 0.00180 0.00740 0.97040 9 0.34350 0.01170 0.00180 0.00990 0.96790 16 0.34190 0.01330 0.00180 0.01150 0.96630 25 0.34060 0.01460 0.00180 0.01280 0.96500 30 0.34030 0.01490 0.00180 0.01310 0.96470 60 0.33925 0.01595 0.00180 0.01415 0.96365 120 0.33850 0.01670 0.00180 0.01490 0.96290 180 0.33810 0.01710 0.00180 0.01530 0.96250 240 0.33790 0.01730 0.00180 0.01550 0.96230 1195 0.33660 0.01860 0.00180 0.01680 0.96100 0.00000 0.00200 0.00400 Deformation (inches) 0.00600 D50 0.00800 0.01000 0.01200 Di00=0.0138 0.01400~ 0.01600 0.01800 1 t₅₀ = 3.1 0.1 100 1000 10 10000 Log Time (min.)

P	roject No. :	15807.01		Sample No.:	ST-8		
E	Boring No. : I	B-1		Depth:	26.0 to 28.	0 feet	
						Do=D1-(D2-D1)	
	8.0 ton Load	d				1) 0.25 to 1.0:	-0.00015- Sory C
						2) 0.5 to 2.0:	0.00085
ini	tial height=	0.96100	inches			3) 1.0 to 4.0:	0.00040
						Do Avg 1&2:	0.00035
Interval	Dial		Deformation	TRUE	Height of	Do Avg 1-3:	0.00037
Minutes	Reading	ΔH	Constant	ΔH	Sample	D100= 0.0159	
0	0.33660					D50=D100+0.5(Do-D1	00)
0.25	0.33250	0.00410	0.00190	0.00220	0.95880	$D_{-2} = 0.00$	795
0.5	0.33110	0.00550	0.00190	0.00360	0.95740	550 0.00	
1	0.33015	0.00645	0.00190	0.00455	0.95645		
2	0.32835	0.00825	0.00190	0.00635	0.95465		
4	0.32600	0.01060	0.00190	0.00870	0.95230		
9	0.32265	0.01395	0.00190	0.01205	0.94895		
16	0.32050	0.01610	0.00190	0.01420	0.94680		
25	0.31940	0.01720	0.00190	0.01530	0.94570		
30	0.31905	0.01755	0.00190	0.01565	0.94535		
60	0.31800	0.01860	0.00190	0.01670	0.94430		
120	0.31730	0.01930	0.00190	0.01740	0.94360		
180	0.31705	0.01955	0.00190	0.01765	0.94335		
240	0.31670	0.01990	0.00190	0.01800	0.94300		

Professional Constant of Lange

TTL

4.0 ton Unload

initial height= 0.9174 inches

Dial		Deformation	TRUE	Height of
Reading	ΔH	Constant	ΔH	Sample
0.28880				·
0.29145	-0.00265	-0.00130	-0.00135	0.91875
0.29200	-0.00320	-0.00130	-0.00190	0.91930
0.29270	-0.00390	-0.00130	-0.00260	0.92000
0.29360	-0.00480	-0.00130	-0.00350	0.92090
0.29440	-0.00560	-0.00130	-0.00430	0.92170
0.29510	-0.00630	-0.00130	-0.00500	0.92240
0.29530	-0.00650	-0.00130	-0.00520	0.92260
0.29550	-0.00670	-0.00130	-0.00540	0.92280
0.29555	-0.00675	-0.00130	-0.00545	0.92285
0.29570	-0.00690	-0.00130	-0.00560	0.92300
0.29575	-0.00695	-0.00130	-0.00565	0.92305
	Dial Reading 0.28880 0.29145 0.29200 0.29270 0.29360 0.29440 0.29510 0.29550 0.29555 0.29555 0.29570 0.29575	Dial Reading ΔH 0.28880 -0.00265 0.29145 -0.00320 0.29200 -0.00320 0.29270 -0.00390 0.29360 -0.00480 0.29440 -0.00650 0.29510 -0.00650 0.29550 -0.00670 0.29555 -0.00675 0.29570 -0.00690	Dial Deformation ΛΗ Constant 0.28880 - 0.29145 -0.00265 -0.00130 0.29200 -0.00320 -0.00130 0.29270 -0.00320 -0.00130 0.29360 -0.00480 -0.00130 0.29360 -0.00560 -0.00130 0.29510 -0.00630 -0.00130 0.29550 -0.00670 -0.00130 0.29555 -0.00675 -0.00130 0.29570 -0.00690 -0.00130 0.29575 -0.00695 -0.00130	Dial Deformation TRUE Reading ΔH Constant ΔH 0.28880 -0.00130 -0.00135 0.29145 -0.00265 -0.00130 -0.00190 0.29200 -0.00320 -0.00130 -0.00260 0.29270 -0.00390 -0.00130 -0.00260 0.29360 -0.00480 -0.00130 -0.00350 0.29440 -0.00560 -0.00130 -0.00430 0.29510 -0.00630 -0.00130 -0.00500 0.29550 -0.00670 -0.00130 -0.00540 0.29555 -0.00675 -0.00130 -0.00545 0.29570 -0.00690 -0.00130 -0.00545 0.29575 -0.00695 -0.00130 -0.00545

TTL

1.0 ton Unload

initial height= 0.92305 inches

Interval	Dial		Deformation	TRUE	Height of
Minutes	Reading	ΔH	Constant	ΔH	Sample
0	0.29575				·
0.25	0.29810	-0.00235	-0.00150	-0.00085	0.92390
0.5	0.29860	-0.00285	-0.00150	-0.00135	0.92440
1	0.29940	-0.00365	-0.00150	-0.00215	0.92520
2	0.30040	-0.00465	-0.00150	-0.00315	0.92620
4	0.30175	-0.00600	-0.00150	-0.00450	0.92755
9	0.30400	-0.00825	-0.00150	-0.00675	0.92980
16	0.30580	-0.01005	-0.00150	-0.00855	0.93160
25	0.30690	-0.01115	-0.00150	-0.00965	0.93270
30	0.30730	-0.01155	-0.00150	-0.01005	0.93310
60	0.30835	-0.01260	-0.00150	-0.01110	0.93415
120	0.30880	-0.01305	-0.00150	-0.01155	0.93460

0.25 ton Unload

initial height= 0.9346 inches

Interval	Dial		Deformation	TRUE	Height of
minutes	Reading	ΔH	Constant	ΔH	Sample
0	0.30880				
0.25	0.31040	-0.00160	0.00000	-0.00160	0.93620
0.5	0.31080	-0.00200	0.00000	-0.00200	0.93660
1	0.31140	-0.00260	0.00000	-0.00260	0.93720
2	0.31220	-0.00340	0.00000	-0.00340	0.93800
4	0.31340	-0.00460	0.00000	-0.00460	0.93920
9	0.31550	-0.00670	0.00000	-0.00670	0.94130
16	0.31760	-0.00880	0.00000	-0.00880	0.94340
25	0.31940	-0.01060	0.00000	-0.01060	0.94520
30	0.32030	-0.01150	0.00000	-0.01150	0.94610
60	0.32390	-0.01510	0.00000	-0.01510	0.94970
120	0.32680	-0.01800	0.00000	-0.01800	0.95260

TTTL Province Language

Project No.:	15807.01
Date:	11/10/2017
Client:	GPD Group
Project:	OTIC MP 34.2 Bridge Demolition
	Wauseon, Fulton County, Ohio
Boring No.:	B-1
Sample No.:	ST-14
Depth:	51.0 to 53.0 feet

TTL ...

Project No.:	15807.01
Date:	11/10/2017
Client:	GPD Group
Project:	OTIC MP 34.2 Bridge Demolition
	Wauseon, Fulton County, Ohio
Boring No.:	B-1
Sample No.:	ST-14
Depth:	51.0 to 53.0 feet

1.013

inches

Initial H=

Pressure	Final	Initial		Average					
tsf	Height	Height	DH	Н	е	t ₅₀ (min)	Ave P	Cv (in2/s)	Cv (ft2/d)
0.25	0.99650	1.01300	0.01650	1.0048	0.414	3.2	0.125	0.000259	0.155
0.5	0.99115	0.99650	0.02185	0.9938	0.407	0.3	0.375	0.002702	1.621
1	0.98130	0.99115	0.03170	0.9862	0.393	1.2	0.75	0.000665	0.399
2	0.97080	0.98130	0.04220	0.9761	0.378	3.2	1.5	0.000244	0.147
4	0.95465	0.97080	0.05835	0.9627	0.355	11.1	3	0.000069	0.041
8	0.93960	0.95465	0.07340	0.9471	0.334	2.2	6	0.000335	0.201
16	0.91445	0.93960	0.09855	0.9270	0.298	3.1	12	0.000228	0.137
4	0.92080	0.91445	0.09220	0.9176	0.307		10		
1	0.93200	0.92080	0.08100	0.9264	0.323		2.5		
0.25	0.94470	0.93200	0.06830	0.9384	0.341		0.625		

Estimated	Cc:	0.119
Estimated	Cr:	0.024

Soil Description:	Gray SILT and CLAY with Little Sand and Trace Gravel A-6a (9)						
Specific Gravity:	2.699						
Liquid Limit:	29						
Plastic Limit:	16						
Plasticity Index:	13						
Initial Water Content:	18.0 %		Final Water Content:	16.6 %			
Inital Dry Density:	117.2 pcf		Final Dry Density:	125.7 pcf			
Initial Void Ratio:	0.438		Final Void Ratio:	0.341			
Initial Degree of Saturation:	111.0 %		Final Degree of Saturation	131.2 %			
Estimated Preconsolidation I	Pressure:	4.0	tsf				

The sample for the test was trimmed from a Shelby tube sample using a cutting shoe. Test Method B was used with the specimen inundated during testing. Coefficients of consolidation were computed by log of time method.

Consolidation Laboratory Calculations

Consolidometer:	2				
Method: Project No. : Client: Project: Location: Boring No. : Sample No.: Depth: Date of Test:	ASTM D 2435 Method B 15807.01 GPD Group OTIC MP 34.2 Bridge Demolition Wauseon, Fulton County, Ohio B-1 ST-14 51.0 to 53.0 feet 11/10/2017		Visual Description: Liquid Limit: Plastic Limit: Plasticity Index:	Gray SILT and CLAY with L 29 % 16 % 13 %	ittle Sand and Trace Gravel A-6a (9)
Initial Sample Data Initial Height Ring Dia. Area of Ring Initial Volume Specific Gravity	$ \begin{array}{r} $	86 ft ³	<i>Final Sample Data</i> Final Height Ring Dia. Area of Ring Final Volume	$\begin{array}{c} 0.945 \text{ in.} \\ \hline 2.493 \text{ in.} \\ \hline 4.8813 \text{ in}^2 \\ \hline 4.6114 \text{ in}^3 \end{array}$	0.00267 ft ³
Initial wet mass soil & ring Mass of ring Initial wet mass soil	<u>324.2</u> g <u>144.7</u> g <u>179.5</u> g <u>0.3957</u>	7 <u>3</u> lb	Final wet mass soil, pan & ring Wt of Pan Final wet mass soil & ring Mass of ring Final dry mass of soil, pan & ring Final wet mass soil Weight of water	372.3 g 50.3 g 322.0 144.7 g 347.1 g 177.3 g 25.2 g	0.39088 lb 0.05556 lb
Initial Water Content Mass can & wet soil Mass can & dry soil Mass of can Mass of water Mass of soil Initial water content Initial water content	300 g 261.8 g 39.5 g 38.2 g 222.3 g 17.18 % (trimmings) 18.01 % (based on final dry we	reiaht) I	Final water content	16.57 % (based on fi	nal dry weight)
Initial dry density	117.2 pcf	- ,	Final weight of solids (Md) Final dry density Final volume of solids (Vs)	152.1 g 125.7 pcf 3.4389 in ³	0.33532 lb
Initial void ratio (eo) Initial volume of voids (Vvo) Initial volume of water (Vwo) Initial degree of saturation (So)	0.438 1.5059 in ³ 0.0008 1.6720 in ³ 0.0009 111.03	87 ft ³ f 97 ft ³ f	Final neight of solids (Hs) Final void ratio (ef) Final volume of voids (Vvf) Final volume of water (Vwf) Final degree of saturation (Sf)	0.7045 in. 0.341 1.1725 in ³ 1.5378 in ³ 131.15 %	$\frac{0.00068}{0.00089} \text{ft}^3$

Project No. : 15807.01 Sample No.: ST-14 Boring No. : B-1 Depth: 51.0 to 53.0 feet Do=D1-(D2-D1) 0.5 ton Load (1) 0.25 to 1.0: 0.00130 2) 0.5 to 2.0: 0.00155 initial height= 0.9965 inches 3) 1.0 to 4.0: 0.00210 Do Avg 1&2: 0.00143 Interval Dial Deformation TRUE Height of Do Avg 1-3: 0.00165 **Minutes** Reading ΔH Constant ΔH Sample D100= 0,0032 0 0.37550 D50=D100+0.5(Do-D100) 0.25 0.37345 0.00205 0.00000 0.00205 0.99445 D50 - 0.00225 0.5 0.37315 0.00235 0.00000 0.00235 0.99415 1 0.37270 0.00280 0.00000 0.00280 0.99370 2 0.37235 0.00315 0.00000 0.00315 0.99335 4 0.37200 0.00350 0.00000 0.00350 0.99300 9 0.37160 0.00390 0.00000 0.00390 0.99260 16 0.37135 0.00415 0.00000 0.00415 0.99235 25 0.37120 0.00430 0.00000 0.00430 0.99220 30 0.37100 0.00450 0.00000 0.00450 0.99200 60 0.37080 0.00470 0.00000 0.00470 0.99180 120 0.37060 0.00490 0.00000 0.00490 0.99160 180 0.37030 0.00520 0.00000 0.00520 0.99130 240 0.37015 0.00535 0.00000 0.00535 0.99115 0.00150 0.00200 D50 0.00250 **Deformation** (inches) 0.00300 D100= 0.0012 0.00350 0.00400 0.00450 0.00500

 $\begin{array}{c} 0.00550 \\ 0.00600 \\ 0.1_{t_{50}} = 0.3 \end{array} \begin{array}{c} 1 \\ 10 \\ 100 \end{array} \begin{array}{c} 100 \\ 1000 \end{array}$

TTL .

Р	roject No. :	15807.01	Si	ample No.:	ST-14	
E	Boring No. : E	3-1		Depth:	51.0 to 53.0	0 feet
						Do=D1-(D2-D1)
	2.0 ton Load	ł				1) 0.25 to 1.0: 0.00140
						2) 0.5 to 2.0: 0.00175
ini	tial height=	0.9813	inches			3) 1.0 to 4.0: 0.00185
						Do Avg 1&2: 0.00157
Interval	Dial		Deformation	TRUE	Height of	Do Avg 1=3: 0:00167
Minutes	Reading	ΔH	Constant	ΔH	Sample	D100= 0,0093
0	0.35670					D50=D100+0.5(Do-D100)
0.25	0.35170	0.00500	0.00240	0.00260	0.97870	
0.5	0.35110	0.00560	0.00240	0.00320	0.97810	V50 = 0.0054
1	0.35050	0.00620	0.00240	0.00380	0.97750	
2	0.34965	0.00705	0.00240	0.00465	0.97665	
4	0.34855	0.00815	0.00240	0.00575	0.97555	
9	0.34710	0.00960	0.00240	0.00720	0.97410	
16	0.34605	0.01065	0.00240	0.00825	0.97305	
25	0.34540	0.01130	0.00240	0.00890	0.97240	
30	0.34520	0.01150	0.00240	0.00910	0.97220	
60	0.34460	0.01210	0.00240	0.00970	0.97160	
120	0.34420	0.01250	0.00240	0.01010	0.97120	
180	0.34395	0.01275	0.00240	0.01035	0.97095	
240	0.34380	0.01290	0.00240	0.01050	0.97080	

	-						
						Do=D1-(D2-D1)	
	8.0 ton Load	1				1) 0.25 to 1.0:	0.00015
						2) 0.5 to 2.0:	0.00035
ini	tial height=	0.95465	inches			3) 1.0 to 4.0:	0.00085
						Do Avg 1&2:	0.00025
Interval	Dial		Deformation	TRUE	Height of	Do Avg 1-3:	0.00045
Minutes	Reading	ΔH	Constant	ΔH	Sample	D100=0.0124	
0	0.32565					D50=D100+0.5(Do-D10)0)
0.25	0.32150	0.00415	0.00190	0.00225	0.95240	P50- 0,0064	6
0.5	0.32060	0.00505	0.00190	0.00315	0.95150	50° 0° - 0 pr	I
1	0.31940	0.00625	0.00190	0.00435	0.95030		
2	0.31780	0.00785	0.00190	0.00595	0.94870		
4	0.31590	0.00975	0.00190	0.00785	0.94680		
9	0.31335	0.01230	0.00190	0.01040	0.94425		
16	0.31180	0.01385	0.00190	0.01195	0.94270		
25	0.31110	0.01455	0.00190	0.01265	0.94200		
30	0.31080	0.01485	0.00190	0.01295	0.94170		
60	0.31000	0.01565	0.00190	0.01375	0.94090		
120	0.30935	0.01630	0.00190	0.01440	0.94025		
180	0.30900	0.01665	0.00190	0.01475	0.93990		
240	0.30870	0.01695	0.00190	0.01505	0.93960		

TTL

TTL .

4.0 ton Unload

initial height= 0.91445 inches

Interval	Dial		Deformation	TRUE	Height of
Minutes	Reading	ΔH	Constant	ΔH	Sample
0	0.28155				
0.25	0.28430	-0.00275	-0.00130	-0.00145	0.91590
0.5	0.28495	-0.00340	-0.00130	-0.00210	0.91655
1	0.28580	-0.00425	-0.00130	-0.00295	0.91740
2	0.28665	-0.00510	-0.00130	-0.00380	0.91825
4	0.28750	-0.00595	-0.00130	-0.00465	0.91910
9	0.28800	-0.00645	-0.00130	-0.00515	0.91960
16	0.28840	-0.00685	-0.00130	-0.00555	0.92000
25	0.28860	-0.00705	-0.00130	-0.00575	0.92020
30	0.28880	-0.00725	-0.00130	-0.00595	0.92040
60	0.28900	-0.00745	-0.00130	-0.00615	0.92060
120	0.28920	-0.00765	-0.00130	-0.00635	0.92080

TTL Int

1.0 ton Unload

initial height= 0.9208 inches

Interval Minutes	Dial Reading	ΔH	Deformation Constant	TRUE ∆H	Height of Sample
0	0.28920				
0.25	0.29160	-0.00240	-0.00160	-0.00080	0.92160
0.5	0.29210	-0.00290	-0.00160	-0.00130	0.92210
1	0.29300	-0.00380	-0.00160	-0.00220	0.92300
2	0.29395	-0.00475	-0.00160	-0.00315	0.92395
4	0.29515	-0.00595	-0.00160	-0.00435	0.92515
9	0.29760	-0.00840	-0.00160	-0.00680	0.92760
16	0.29910	-0.00990	-0.00160	-0.00830	0.92910
25	0.30020	-0.01100	-0.00160	-0.00940	0.93020
30	0.30050	-0.01130	-0.00160	-0.00970	0.93050
60	0.30150	-0.01230	-0.00160	-0.01070	0.93150
120	0.30200	-0.01280	-0.00160	-0.01120	0.93200

TTL.

0.25 ton Unload

initial height=

Interval Dial Deformation TRUE Height of **Minutes** Reading ΔH Constant ΔH Sample 0 0.30200 0.25 0.30320 -0.00120 0.00000 -0.00120 0.93320 0.5 0.30350 -0.00150 0.00000 -0.00150 0.93350 1 0.30400 -0.00200 0.00000 -0.00200 0.93400 2 0.30450 -0.00250 0.00000 -0.00250 0.93450 4 0.30530 -0.00330 0.00000 -0.00330 0.93530 9 0.30690 -0.00490 0.00000 -0.00490 0.93690 16 0.30850 -0.00650 0.00000 -0.00650 0.93850 25 0.30990 -0.00790 0.00000 -0.00790 0.93990 30 0.31050 -0.00850 0.00000 -0.00850 0.94050 60 0.31290 -0.01090 0.00000 -0.01090 0.94290 120 0.31470 -0.01270 0.00000 -0.01270 0.94470

0.932 inches

Embank software input

Model 1: Existing Settlement

ev C:\I	DOCUME~1\ALLUSE~1\Desktop\embank\EMBANK.EXE		
	FEDERAL HIGHWAY ADMINIS	TRATION	
		project soil Pro Water ta Stress 1	Main Menu Definition ofile and soil param. able definition history
	User Defined	Norma	Stress history lly consolidated soil fined stress history
A di du	# 1 STRESS HISTORY Maximum Past Pressure with Elev. WARNING : Maximum past pressure vs. Elev	ation	
C1 Fo em tw	C Program interpolates linearly between p Elev. Maximum Past Pressure Last	points) points)	ENGINEERING INC. stland Avenue ster, MA 01890
in fi re	791.00 5800 Hit <f10> to accept values ==</f10>	No	7) 729-2363 r. Alfredo Urzua

📾 C:\DOCUME~1\ALLUSE~1\Desktop\embank\EMBANK.EXE	
FEDERAL HIGHWAY ADMINISTRATION	
project soil Pre Water to Stress	Main Menu Definition ofile and soil param. able definition history Stress bistory
User Defined Norma:	lly consolidated soil fined stress history
di Maximum Past Pressure with Elev. du WARNING : Maximum past pressure vs. Elevation th must be defined for complete soil profile (1) (Program interpolates linearly between points)	
Fo em Elev. Maximum Past Pressure Last point tw in 770.00 7200.00 No	ENGINEERING INC. stland Avenue ster, MA 01890 7) 729-2363
fi re Hit <f9> to prev.point, <f10> to accept values = Space Bar-Next item Alt-M-Menu</f10></f9>	r. Alfredo Urzua

At the abutment:

EXISTA.emb

At the pier:

EXISTP.emb

At the toe (estimate influence from adjacent embankment):

EXISTT.emb

Model 2: Infinite Embankment

INFINP.emb

EMBANK software output:

Model 1: Existing Embankment

At the abutment:

EXISTA.emb

🔤 C:\DOCUME~1\ALLUSE~1	\Desktop\embank\EMBANK	.EXE	
ONE DIMENSION	AL SETTLEMENT ANALYS ENT OF STRESSES BENE	SIS/Federal Highway Ad ATH THE END OF FILL CO	ministration NDITION
Project Name : 0 File Name : E Date : 1	TIC MP 34.2 ixist Abut 1/29/17	Client : GPD Project Manager : DU Computed by : KCH	Group
Settlem	ent for X = 80.00	(ft) $Y = 47.00$	(ft)
Embank. slope, x d y d Embankment top wid Embankment bottom Created Surface Flo	lirec. = 56.00 (ft lirec. = 56.00 (ft th = 126.00 (ft width = 238.00 (ft	 Height of fill H Unit weight of fill p load/unit area Foundation Elev. 	= 28.00 (ft) = 125.00 (pcf) = 3500.00 (psf) = 791.00 (ft)
Water table Elev.	= 786.00 (ft	Unit weight of Wat.	= 62.40 (pcf)
Nº. TYPE THICK. ⟨ft>	COMP. RECOMP. RATIO	SWELL. UNIT WEIGHT (pcf)	Settlement (in.)
1 INCOMP. 13.5		- 125.00	0.00
Hit arrow key	s to display next s	reen. <f8> Print. <f1< td=""><td>0> Main Menu</td></f1<></f8>	0> Main Menu
C:\DOCUME~1\ALLUSE~1	l\Desktop\embank\EMBANk	.EXE	
C:\DOCUME~1\ALLUSE~1	l\Desktop\embank\EMBANk NAL SETTLEMENT ANALY: ENT OF STRESSES BENE	.EXE SIS/Federal Highway Adı ATH THE END OF FILL CO	ministration NDITION
C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME Nº. LAYER Nº. TYPE THICK. (ft)	I\Desktop\embank\EMBANK IAL SETTLEMENT ANALY: ENT OF STRESSES BENE COMP. RECOMP. RATIO	.EXE SIS/Federal Highway Adu ATH THE END OF FILL CO SWELL. UNIT WEIGHT (pcf)	LOX ministration NDITION Settlement (in.)
© C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	I\Desktop\embank\EMBANK IAL SETTLEMENT ANALY INT OF STRESSES BENE COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	.EXE SIS∕Federal Highway Adu ATH THE END OF FILL CO SWELL. UNIT WEIGHT <pre>cf></pre>	LOX ministration NDITION Settlement (in.) 0.00 0.64 4.10 0.50
C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	I\Desktop\embank\EMBANK HAL SETTLEMENT ANALY ENT OF STRESSES BENE COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	.EXE SIS∕Federal Highway Adu ATH THE END OF FILL CO SWELL. UNIT WEIGHT ⟨pcf⟩ - 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settlemen	X ministration NDITION Settlement (in.) 0.00 0.64 4.10 0.50 nt = 5.24
C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	I\Desktop\embank\EMBANK HAL SETTLEMENT ANALY ENT OF STRESSES BENE COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	.EXE SIS/Federal Highway Add ATH THE END OF FILL CO SWELL. UNIT WEIGHT (pcf) - 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settlemen	X ministration NDITION Settlement (in.) 0.00 0.64 4.10 0.50 nt = 5.24
C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME Nº. LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0 SUBLAYEN Nº. THICK. EI (ft)	I\Desktop\embank\EMBANK IAL SETTLEMENT ANALY ENT OF STRESSES BENE COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021 8. EU. INITIAL INCR (ft) (psf) (p	.EXE SIS/Federal Highway Add ATH THE END OF FILL COL SWELL. UNIT WEIGHT (pcf) - 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settlement DIL STRESSES EMENT MAX.PAST PRESS. sf) (psf)	LIX ministration NDITION Settlement (in.) 0.00 0.64 4.10 0.50 nt = 5.24 SETTLEMENT (in.)
© C:\DOCUME~1\ALLUSE~1 ONE DIMENSION INCREME Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0 4 COMP. 7.0 1 INCOMP. 2 INCOMP. 3 INCOMP. 3 INCOMP. 3 275 - 725	I\Desktop\embank\EMBANK HAL SETTLEMENT ANALY ENT OF STRESSES BENE COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021 EU. INITIAL INCR (ft) (psf) (p	.EXE SIS/Federal Highway Add ATH THE END OF FILL COL SWELL. UNIT WEIGHT (pcf) - 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settlemen DIL STRESSES EMENT MAX.PAST PRESS. sf) (psf) 3.56 6150.00	LIX ministration NDITION Settlement (in.) 0.00 0.64 4.10 0.50 nt = 5.24 SETTLEMENT (in.) 0.34

	ALLUSE~1\Deskt	op\embank\B	MBANK.EXE		
ONE DI	MENSIONAL SE	TTLEMENT (ANALYSIS/Fe	deral Highway Admi	nistration
	INGALITEMI OF	OTALOOLO	DENERIII III		
				Total Settlement	= 5.24
			COLL OT	DECCEC	
Nº. THI	CK. ELEV.	INITIAL	INCREMENT	MAX.PAST PRESS.	SETTLEMENT
(ft) (ft)	(psf)	(psf)	(psf)	(in.)
1 INCO	MP.				
2 INCO	IP.				
	5 775.63	1293.22	2813.56	6150.00	0.34
5 3.7	5 771.88	1565.47	2751.21	6850.00	0.30
6 10.20 7 10 20	0 764.90 0 754 70	2071.86	2625.11	7200.00	1.26 Ø 96
8 10.20	0 744.50	3552.90	2259.92	7200.00	0.76
9 10.20	0 734.30	4293.42	2099.26	7200.00	0.61
10 10.20	0 724.10	5658.30	1846.80	7200.00	0.51
			_		
			To	tal Settlement =	5.24 (in.)
Hit ar	row keys to	display no	ext screen.	<f8> Print. <f10></f10></f8>	Main Menu 🔜

At the pier:

EXISTP.emb

🛋 C:\DOCUME~1\ALLUSE~1\De	sktop\embank\EMBANK.EX	XE	_ 🗆 ×
ONE DIMENSIONAL	SETTLEMENT ANALYSI	S/Federal Highway Ad	Iministration
Project Name : OTIC File Name : Exis Date : 11/2	MP 34.2 C t Pier P 9/17 C	lient : GPI roject Manager : DV omputed by : KCF) Group
Settlement	for X = 80.00 (f	t) $Y = 17.00$	(ft)
Embank. slope, x dire y dire Embankment top width Embankment bottom wid Ground Surface Elev. Water table Elev.	c. = 56.00 (ft) c. = 56.00 (ft) = 126.00 (ft) th = 238.00 (ft) = 791.00 (ft) = 786.00 (ft)	Height of fill H Unit weight of fill p load/unit area Foundation Elev. Unit weight of Wat.	= 28.00 (ft) = 125.00 (pcf) = 3500.00 (psf) = 791.00 (ft) = 62.40 (pcf)
Nº. TYPE THICK. ⟨ft⟩	COMP. RECOMP. RATIO	SWELL. UNIT WEIGHT (pcf)	Settlement (in.)
1 INCOMP. 13.5		125.00	0.00
Hit arrow keys t	o display next scr	een. <f8> Print. <f1< td=""><td>l0> Main Menu 🗕 🚽</td></f1<></f8>	l0> Main Menu 🗕 🚽
C:\DOCUME~1\ALLUSE~1\De	sktop\embank\EMBANK.EX	KE S/Padamal Highway Od	
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL INCREMENT	sktop\embank\EMBANK.EX SETTLEMENT ANALYSI OF STRESSES BENEAT	KE S⁄Federal Highway Ad H THE END OF FILL CO	Iministration NDITION
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL INCREMENT Nº. LAYER Nº. TYPE THICK. (ft)	sktop\embank\EMBANK.E SETTLEMENT ANALYSI OF STRESSES BENEAT COMP. RECOMP. RATIO	KE S/Federal Highway Ad H THE END OF FILL CC SWELL. UNIT WEIGHT (pcf)	Lministration NDITION Settlement (in.)
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL INCREMENT Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	sktop\embank\EMBANK.EX SETTLEMENT ANALYSI OF STRESSES BENEAT COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	KE S/Federal Highway Ad H THE END OF FILL CC SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00	Lministration Settlement (in.) 0.00 0.34 2.39 0.14
■ C:\DDCUME~1\ALLU5E~1\De ONE DIMENSIONAL INCREMENT Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	sktop\embank\EMBANK.E3 SETTLEMENT ANALYSI OF STRESSES BENEAT COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	KE S/Federal Highway Ad H THE END OF FILL CC SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settleme	Lministration Settlement (in.) 0.00 0.34 2.39 0.14 ent = 2.87
■ C:\DDCUME~1\ALLU5E~1\De ONE DIMENSIONAL INCREMENT LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0 SUBLAYER Nº. THICK. ELEU. (ft) 1 INCOMP. 2 INCOMP. 3 INCOMP. 3 INCOMP. 3 25 63	sktop\embank\EMBANK.E3 SETTLEMENT ANALYSI OF STRESSES BENEAT COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021 INITIAL SOI (psf) (psf)	KE S∕Federal Highway Ad H THE END OF FILL CC SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settleme L STRESSES ENT MAX.PAST PRESS. > (psf) 51 6150.00	Lini istration NDITION Settlement (in.) 0.00 0.34 2.39 0.14 ent = 2.87 SETTLEMENT (in.) 0.18

C:\DOCUME~1\ALLUSE~1\Desktop\embank\EMBANK.EXE	
ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal H	ighway Administration
INGREMENT OF STRESSES DEMENTIN THE END O	F FILL CONDITION
Total	Settlement = 2.87
SUBLAYER SOIL STRESSES	
Nº. THICK. ELEU. INITIAL INCREMENT MAX.PA	ST PRESS. SETTLEMENT
(ft) (ft) (psf) (psf) (ps	f) (in.)
1 INCOMP.	
2 INCOMP.	
3 INCOMP.	
4 3.75 775.63 1293.22 1097.51 6150	.00 0.18
5 3.75 771.88 1565.47 1117.01 6850	.00 0.16
6 10.20 764.90 2071.86 1153.49 7200	.00 0.68
7 10.20 754.70 2812.38 1193.30 7200	.00 0.55
8 10.20 744.50 3552.90 1211.13 7200	.00 0.45
9 10.20 734.30 4293.42 1210.10 7200	.00 0.38
10 10.20 724.10 5033.94 1195.58 7200	.00 0.33
11 7.00 715.50 5658.30 1176.27 7200	.00 0.14
Total Set	tlement = 2.87 (in.)
Hit arrow keys to display next screen. <f8> P</f8>	rint. <f10> Main Menu</f10>

At the toe (estimate influence from adjacent embankment):

EXISTT.emb

📾 C:\DOCUME~1\ALLUSE~1\Desktop\embank\EMBANK.EXE	
ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal Highway Administr INCREMENT OF STRESSES BENEATH THE END OF FILL CONDITION	ation
Project Name: OTIC MP 34.2Client: GPD GroupFile Name: Exist ToeProject Manager: DUDate: 11/29/17Computed by: KCH	
Settlement for X = 80.00 (ft) Y = 0.00 (ft)	
Embank. slope, x direc. =56.00 (ft)Height of fill H=28y direc. =56.00 (ft)Unit weight of fill =125Embankment top width =126.00 (ft)p load/unit area=3500Embankment bottom width =238.00 (ft)Foundation Elev.=791Ground Surface Elev.=791.00 (ft)Unit weight of Wat.=62	.00 (ft) .00 (pcf) .00 (psf) .00 (ft) .40 (pcf)
LAYER COMP. RECOMP. SWELL. UNIT Nº. TYPE THICK. RATIO WEIGHT (ft) (pcf)	Settlement (in.)
1 INCOMP. 13.5 125.00 0.00	
Hit arrow keys to display next screen. <f8> Print. <f10> Main</f10></f8>	Menu
ev C·\DOCUME~1\&LLUSE~1\Desktop\embank\EMB&NK EXE	
ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal Highway Administra INCREMENT OF STRESSES BENEATH THE END OF FILL CONDITION	ation
LAYER COMP. RECOMP. SWELL. UNIT S Nº. TYPE THICK. RATIO WEIGHT (ft) (pcf)	Settlement (in.)
1 INCOMP. 13.5 125.00 0.00 2 COMP. 7.5 0.150 0.015 0.015 135.00 3 COMP. 51.0 0.125 0.029 0.029 135.00 4 COMP. 7.0 0.210 0.021 0.021 135.00	0.12 1.36 0.10
Total Settlement =	1.58
SUBLAYER Nº. THICK. ELEU. INITIAL INCREMENT MAX.PAST PRESS. SETTI (ft) (ft) (psf) (psf) (psf) (LEMENT in.)
1 INCOMP. 2 INCOMP. 3 INCOMP. 4 3 75 775 63 1293 22 290 73 6150 00	9-96

— Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu

🔤 C:\DOCU	IME~1\ALLU	ISE~1\Desk	top\embank\	EMBANK.EXE		
0		SIONAL SI	ETTLEMENT	ANALYSIS/Fe BENEATH TH	deral Highway Adm	inistration
	1110.		U UTILUULU			
					Total Settlemen	t = 1.58
	CUDI			0011 01	DECORO	
Nº.	THICK.	ELEU.	INITIAL	INCREMENT	MAX.PAST PRESS.	SETTLEMENT
	(ft)	(ft)	(psf)	(psf)	(psf)	(in.)
1	INCOMP.					
2	INCOMP.					
	INCOMP.	775 63	1293 22	290 73	6150 00	0 06
1 3	3.75	771.88	1565.47	355.78	6850.00	0.06
6	10.20	764.90	2071.86	464.72	7200.00	0.31
1 6	10.20	754.70	2812.38	574.13	7200.00	ย.30 ด 27
I ğ	10.20	734.30	4293.42	755.74	7200.00	0.25
10	10.20	724.10	5033.94	798.94	7200.00	0.23
11	7.00	715.50	5658.30	821.54	7200.00	0.10
				To	tal Settlement =	1.58 (in.)
	it appou	keus to	display_p	evt scheen	(F8) Pwint (F10	> Main Menu
	ic arrow	Neys co	arspray n	CAU SCIECH.		

Model 2: Infinite Embankment

infinp.emb

🔤 C:\DOCUME~1\ALLUSE~1\De	sktop\embank\EMBANK.E	XE			
ONE DIMENSIONAL SETTLEMENT ANALYSIS/Federal Highway Administration					
Project Name : OTIO File Name : infi Date : 11/1	MP 34.2 C n pier P 7/11 C	lient : GPD roject Manager : DU omputed by : KCH	Group		
	Settlement for X =	80.00 (ft)			
Embankment slope a Embankment top width Embankment bottom wid Ground Surface Elev. Water table Elev.	= 52.00 (ft) = 126.00 (ft) = 230.00 (ft) = 791.00 (ft) = 786.00 (ft)	Height of fill H Unit weight of fill p load/unit area Foundation Elev. Unit weight of Wat.	= 28.00 (ft) = 125.00 (pcf) = 3500.00 (psf) = 791.00 (ft) = 62.40 (pcf)		
Nº. TYPE THICK. ⟨ft⟩	COMP. RECOMP. RATIO	SWELL. UNIT WEIGHT <pcf></pcf>	Settlement (in.)		
1 INCOMP. 13.5 2 COMP. 7.5	0.150 0.015	125.00 0.015 135.00	0.00 0.72		
Hit arrow keys t	o display next scr	een. <f8> Print. <f1< td=""><td>0> Main Menu</td></f1<></f8>	0> Main Menu		
C:\DOCUME~1\ALLUSE~1\De	sktop\embank\EMBANK.E	XE			
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL STRIF	sktop\embank\EMBANK.E SETTLEMENT_ANALYSI 'SYMMETRICAL_VERTI	XE S/Federal Highway Ad CAL EMBANKMENT LOADI	ministration NG		
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL STRIF Nº. LAYER Nº. TYPE THICK. <ft></ft>	sktop\embank\EMBANK.E SETTLEMENT ANALYSI SYMMETRICAL UERTI COMP. RECOMP. RATIO	XE S/Federal Highway Ad CAL EMBANKMENT LOADI SWELL. UNIT WEIGHT (pcf)	ministration NG Settlement (in.)		
© C:\DOCUME~1\ALLU5E~1\De ONE DIMENSIONAL STRIF LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	sktop\embank\EMBANK.E SETTLEMENT ANALYSI SYMMETRICAL UERTI COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	XE S∕Federal Highway Ad CAL EMBANKMENT LOADI SWELL. UNIT WEIGHT ⟨pcf⟩ 125.00 0.015 135.00 0.029 135.00 0.021 135.00	_ □ × ministration NG Settlement (in.) 0.00 0.72 5.82 0.31		
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL STRIF LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0	sktop\embank\EMBANK.E SETTLEMENT ANALYSI SYMMETRICAL VERTI COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021	XE S/Federal Highway Ad CAL EMBANKMENT LOADI SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settleme	X ministration NG Settlement (in.) 0.00 0.72 5.82 0.31 nt = 6.85		
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL STRIF LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0 Nº. THICK. ELEU. (ft) 1 INCOMP. 2 INCOMP. 2 INCOMP. 2 INCOMP.	sktop\embank\EMBANK.E SETTLEMENT ANALYSI SYMMETRICAL VERTI COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021 INITIAL SOI INITIAL INCREM <psf> (psf</psf>	XE S/Federal Highway Ad CAL EMBANKMENT LOADI SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settleme L STRESSES IENT MAX.PAST PRESS. (psf)	<pre>ministration NG Settlement (in.) 0.00 0.72 5.82 0.31 nt = 6.85 SETTLEMENT (in.)</pre>		
© C:\DOCUME~1\ALLUSE~1\De ONE DIMENSIONAL STRIF LAYER Nº. TYPE THICK. (ft) 1 INCOMP. 13.5 2 COMP. 7.5 3 COMP. 51.0 4 COMP. 7.0 Nº. THICK. ELEU. (ft) (ft) 1 INCOMP. 2 INCOMP. 3 INCOMP. 4 3.75 775.63	sktop\embank\EMBANK.E SETTLEMENT ANALYSI SYMMETRICAL VERTI COMP. RECOMP. RATIO 0.150 0.015 0.125 0.029 0.210 0.021 INITIAL INCREM (psf) (psf)	XE S/Federal Highway Ad CAL EMBANKMENT LOADI SWELL. UNIT WEIGHT (pcf) 125.00 0.015 135.00 0.029 135.00 0.021 135.00 Total Settleme L STRESSES IENT MAX.PAST PRESS. (psf) 29 6150.00	<pre>ministration NG Settlement (in.) 0.00 0.72 5.82 0.31 nt = 6.85 SETTLEMENT (in.) 0.38</pre>		

C:\	DOCU	ME~1\ALLU	SE~1\Desk	top\embank\	EMBANK.EXE		
	- 0	NE DIMENS	SIONAL SI	ETTLEMENT	ANALYSIS/Fe	deral Highway Admi	nistration
			SINIF	STHEFT	D VENITORD	EIDANKIENI LOADING	
						Total Settlement	= 6.85
		SUBL	AYER		SOIL SI	RESSES	
	Nº.	THICK.	ELEU.	INITIAL	INCREMENT	MAX.PAST PRESS.	SETTLEMENT
		(ft)	(ft)	(psf)	(psf)	(psf)	(in.)
	1234	INCOMP. INCOMP. INCOMP.	775 62	1000 00	2474 20	6150 00	A 20
	2	3.75	771 88	1565 47	3474.47	6820 00	0.30
	័ត៍	10.20	264.90	2071-86	3402.43	7200-00	1.50
	Ž	10.20	754.70	2812.38	3299.83	7200.00	1.20
	8	10.20	744.50	3552.90	3178.87	7200.00	0.99
	- 9	10.20	734.30	4293.42	3050.20	7200.00	0.93
	10	10.20	724.10	5033.94	2920.24	7200.00	1.21
	11	7.00	715.50	5658.30	2812.38	8997.50	0.31
					To	tal Settlement =	6.85 (in.)
	— н	it arrow	keys to	display n	ext screen.	<pre><f8> Print. <f10></f10></f8></pre>	Main Menu

Project Name:	OTIC MP 34.2 Bridge Demolition
Project Number:	1580701
Calculated by:	KCH 11/21/2017

Embankment Parameters

Height	Pressure @ 125 pcf		
28 feet	3500 psf	1.75 tsf	

Coefficient of Consolidation from NAVFAC Figure 4 (7.1-144)

C 1 1		Virgin Con	npression	Recompression	
Stratum	LL	C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)
II	27	>0.05	>0.5	>0.3	>2
II	25	>0.05	>0.5	>0.3	>2
III	30	0.05	4.7	>0.3	>2
III	29	>0.05	>0.5	>0.3	>2
III	28	>0.05	>0.5	>0.3	>2
III	30	0.05	4.7	>0.3	>2
III	30	0.05	4.7	>0.3	>2
IV	38	0.03	3.0	0.2	17

Average C _v (ft ² /day)
2
2
17
17

Coefficient of Consolidation from Tested Values

Churchaum	Pressure	Virgin Con	npression	Recompression		
Stratum	(tsf)	C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)	
B-1 (ST-8)	1.0	-		-	0.10	
III	2.0	-		-	0.12	
B-1 (ST-14)	1.0	-		-	0.40	
III	2.0	-		-	0.15	

Cv for	
1.75 tsf	
0.12	
0.21	

Project Nar OTIC MP 34.2 Bridge Demolition Project Nur 1580701 Calculated KCH 11/21/2017

Encountered Conditions

Stratum II layer thicknesses: 10.5, 3, 4.5	
Stratum III layer thicknesses: 57, 3, 41	
Stratum IV layer thickness: 7	

Assume double drainage between strata layers

Time for 90% Consolidation

$$t = \frac{T (H_{dr})^2}{C_v}$$

where T = 0.848 for 90% consolidation

Results Based on Low End H_{dr}

Stratum	From	NAVFAC Cv	Values	From Lab Cv Values			
	t (days)	t (weeks)	t (months)	t (days)	t (weeks)	t (months)	
П	3.82	0.545	0.127				
III	3.8	0.545	0.127	66	9.5	2.2	
IV	2.4	0.34	0.08				

Results Based on High End H_{dr}

Stratum	From	NAVFAC Cv	Values	From Lab Cv Values			
	t (days)	t (weeks)	t (months)	t (days)	t (weeks)	t (months)	t (years)
II	46.7	6.68	1.558				
III	170	24	6	2950	421	98	8
IV	2.4	0.34	0.08				

Low

H_{dr} (feet)

3

3

7

High

H_{dr} (feet)

10.5

20

7

Final Conclusions

High end results not realistic for Stratum III Expect 1.5 to 2.5 months for 90% consolidation

GPD Group Cleveland, Ohio

Geotechnical Subsurface Investigation OTIC MP 34.5 Bridge Widening Wauseon, Fulton County, Ohio

December 2017

1915 North 12th Street Toledo, OH 43604-5305 T 419-324-2222 F 419-241-1808 www.ttlassoc.com

December 29, 2017

TTL Project No. 1580702

Mr. Tom Washko, P.E. GPD Group 5595 Transportation Boulevard, Suite 100 Cleveland, Ohio 44125

Geotechnical Subsurface Investigation OTIC MP 34.5 Bridge Widening Wauseon, Fulton County, Ohio

Dear Mr. Washko:

Following is the report of the geotechnical subsurface investigation performed by TTL Associates, Inc. (TTL) at the site of the referenced project. This investigation was performed in general accordance with TTL Proposal No. 15807.02R2, dated August 9, 2017, and authorized by you on October 13, 2017.

This final report contains the results of our study, incorporates furnished ground surface elevations into the boring logs, and provides our design and construction recommendations for foundations.

Soil samples collected during this investigation will be stored at our laboratory for 90 days from the date of this report. The samples will be discarded after this time unless you request that they be saved or delivered to you.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely,

TTL Associates, Inc.

Katherine C. Hennicken, P.E. Geotechnical Engineer

David M. Vovak, P.E. Transportation Director

T:\Geotech\Projects 2017\15807.01_02...\Report - OTIC MP 34.5 Bridge Widening\1580702 TTL Geotech Report OTIC MP 34.5 Bridge Widening Fulton County OH.docx

GEOTECHNICAL SUBSURFACE INVESTIGATION OTIC MP 34.5 BRIDGE WIDENING WAUSEON, FULTON COUNTY, OHIO

FOR

GPD GROUP 5595 TRANSPORTATION BOULEVARD, SUITE 100 CLEVELAND, OHIO 44125

SUBMITTED

DECEMBER 29, 2017 TTL PROJECT NO. 1580702

TTL ASSOCIATES, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222 (419) 321-6257 (FAX)

TABLE OF CONTENTS

1.0	I	NTRODUCTION	1
2.0	I	NVESTIGATIVE PROCEDURES	2
3.0	P	ROPOSED CONSTRUCTION	4
4.0	G	ENERAL SITE AND SUBSURFACE CONDITIONS	5
4	.1	General Site Conditions	5
4	.2	Site Geology	5
4	.3	General Soil Conditions	5
4	.4	Groundwater Conditions	6
5.0	D	ESIGN RECOMMENDATIONS	8
5	.1	Temporary Bridge Structure Foundations	8
5	.2	Bridge Foundations	1
		5.2.1 Shallow Foundations	1
		5.2.2 Driven Pile Foundations	4
5	.3	Groundwater Control	9
5	.4	Excavations and Slopes	20
6.0	С	ONSTRUCTION RECOMMENDATIONS 2	21
6	.1	Site Preparation	21
6	.2	Fill	21
6	.3	Foundation Excavations	22
7.0	Q	UALIFICATIONS OF RECOMMENDATIONS	23

PLATES

Plate 1.0 Site Location Map Plate 2.0 Test Boring Location Plan

FIGURES

Logs of Test Borings B-1 and B-2 Legend Key Tabulation of Test Data FHWA DRIVEN Output

1.0 INTRODUCTION

This geotechnical subsurface investigation report has been prepared for the bridge widening project in Fulton County, Ohio. The project is located at mile post (MP) 34.5 of the James W. Shocknessy Ohio Turnpike (Interstate Route 90 [IR-90]) over State Route (SR) 108, as shown on the attached Site Location Map (Plate 1.0).

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, presents our findings from the field and laboratory testing, and provides our design and construction recommendations for bridge foundations.

This investigation was performed in general accordance with TTL Proposal No. 15807.02R2, dated August 9, 2017, and authorized by Mr. Tom Washko, P.E. of GPD Group on October 13, 2017.

The purpose of this investigation was to evaluate the subsurface conditions relative to the design and construction of foundations at the referenced location. To accomplish this, two test borings, field and laboratory soil testing, a geotechnical engineering evaluation of the test results, and review of available geologic and soils data for the project area were performed.

This report includes:

- A description of the subsurface soil and groundwater conditions encountered in the borings.
- Design recommendations for bridge pier and abutment foundations.
- Recommendations concerning soil and groundwater-related construction procedures such as site preparation, earthwork, foundation construction, and related field testing.

The scope of this study did not include an environmental assessment of the subsurface materials at this site.

2.0 INVESTIGATIVE PROCEDURES

Two test borings, designated as Borings B-1 and B-2, were drilled by TTL on October 30 and November 1, 2017. Boring B-1 was performed at the location of the western abutment of the proposed bridge, and Boring B-2 was performed at the location of the eastern abutment. The boring locations were established in the field by TTL based on direction from GPD Group. Ground surface elevations at the boring locations were estimated to the nearest foot based on existing bridge elevations shown on drawings provided by GPD group. The approximate locations of the test borings are shown on the attached Test Boring Location Plan (Plate 2.0).

The test borings were performed in general accordance with Ohio Department of Transportation (ODOT) "Specifications for Geotechnical Explorations" (July 2017). The test borings performed during this investigation were drilled with an ATV-mounted rotary drilling rig utilizing 3¹/₄-inch inside diameter hollow-stem augers. Both borings were extended to a depth of 80 feet below existing grade.

During auger advancement, soil samples were collected at 2¹/₂-foot intervals to a depth of 10 feet and at 5-foot intervals thereafter using a split-spoon sampler. The soil samples were sealed in jars and transported to our laboratory for further classification and testing.

Split-spoon (SS) samples were obtained by the Standard Penetration Test (SPT) Method (ASTM D 1586), which consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch intervals with the number of blows per increment being recorded at each depth interval, and these data are presented under the "Std. Pen." column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m -value, and is typically reported in blows per foot (bpf). The N_m -values were corrected to an equivalent rod energy ratio of 60 percent, N_{60} . The calibrated hammer/rod energy ratio for the drill rig utilized for this project was 80.3 percent, and was last calibrated on January 10, 2017. The N_{60} values are presented on the attached Logs of Test Borings and Tabulation of Test Data sheets. In conjunction with published data and typical correlations, the N_{60} -value can be evaluated as a measure of soil compactness/consistency as well as shear strength and bearing capacity.

Soil conditions encountered in the test borings are presented in the Logs of Test Borings, along with information related to sample data, SPT results, water conditions observed in the

borings, and laboratory test data. It should be noted that these logs have been prepared on the basis of laboratory classification and testing, as well as field logs of the encountered soils.

All of the recovered subsoil samples were classified in accordance with the ODOT soil classification system. Where gradation and plasticity tests were not performed for a "direct" mechanical determination of the appropriate ODOT classification, the soils were classified using visual-manual procedures. All samples of the subsoils were tested in our laboratory for moisture content (ASTM D 2216). Selected intact cohesive split-spoon samples were tested for dry density and unconfined compressive strength utilizing constant rate of strain methods (ASTM D 2166). Unconfined compressive strength estimates were obtained for the remaining intact cohesive samples using a calibrated hand penetrometer. Atterberg limits tests (ASTM D 4318) and particle size analyses (ASTM D 422) were performed on four selected granular soil sample from each boring. The results of these tests are presented on the Logs of Test Borings, Tabulation of Test Data sheets, and Grain Size Distribution sheets attached to this report.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations, especially at previously developed sites such as this site. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering services during the site preparation, excavation, and foundation phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.0 PROPOSED CONSTRUCTION

We understand that it is planned to widen the existing twin bridges located at MP 34.5 of the James W. Shocknessy Ohio Turnpike (Interstate Route 90 [IR-90]) over State Route (SR) 108 in Fulton County, Ohio. We further understand that the inside lanes of each bridge structure will be widened 6 to 7 feet and will include one additional beam line and associated substructure widening.

The existing bridges are indicated to be 3-span structures, with abutments on pile foundations and piers on shallow foundations. Total length of the bridges is indicated to be approximately 124 feet. Based on the retrieved as-built drawings, the abutment piles are indicated to be HP10x42 H-piles and have estimated lengths of 33 feet below approximate Elev. 805 with a maximum load of 21 tons along Pile Line "N," as well as 28 feet below approximate Elev. 796 with a maximum load of 18 tons along Pile Line "M." Additionally, the piles along Pile Line "M" are indicated at a battered ratio of 1 horizontal to 4 vertical (1H:4V). Stickup is shown to be 1 foot vertical within each footing. Based on these lengths, and based on bedrock on the order of 210 to 230 feet below existing grades (approximate Elevs. 772 to 768. The shallow foundations are indicated to bear at Elev. 782.

It is indicated that during construction, a temporary single-span Acrow type bridge will be placed within the OTIC median for maintenance of traffic purposes, and will bear on a pile cap foundation.

4.0 GENERAL SITE AND SUBSURFACE CONDITIONS

4.1 General Site Conditions

The indicated bridge clearance between the bridges and SR 108 is indicated to be on the order of 15 feet. Grades along the bridges are on the order of Elevs. 808 to 807.

The surface materials encountered in Borings B-1 and B-2 consisted of topsoil with thicknesses of 12 inches and 10 inches, respectively.

4.2 <u>Site Geology</u>

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project site is located within the Maumee Sand Plains District of the Maumee Lake Plains Physiographic Region of Ohio. These regions include upper profile soils consisting of sands deposited in glacial lakes in the form of low dunes, beach ridges, and sand bars, as well as silty and clayey lacustrine deposits. The sands and lacustrine deposits are underlain by predominantly silty and clayey glacial till, before encountering bedrock.

Bedrock at the site is Silurian age, broadly mapped as the Olentangy shale formation. Based on available bedrock topography maps, the top of bedrock can be expected from Elevs. 600 to 580, approximately 210 to 230 feet below existing grades.

4.3 General Soil Conditions

Based on the results of our field and laboratory tests, the subsoils encountered underlying the topsoil consists of cohesive embankment fills underlain by native soils which can generally be characterized a layer of granular soils overlying cohesive glacial till. Additional descriptions of the soil stratigraphy encountered in the borings are presented on the Logs of Test Borings attached to the report.

Granular embankment **fill** materials were encountered underlying the surface materials in in Borings B-1 and B-2 to depths of approximately $17\frac{1}{2}$ feet and 19 feet below existing grades (approximate Elev. 789), respectively. The fill materials consisted of coarse and fine sand. Non-soil materials encountered in the fill consisted of concrete fragments in the uppermost sample from Boring B-1, in trace amounts. SPT N₆₀-values generally ranged from 8 to 23 blows per foot (bpf), indicating predominantly medium dense compactness, encountered to a

depth of 8 feet and 6 feet (approximate Elevs. 798 and 802), in Borings B-1 and B-2 respectively. Below these depths, SPT N_{60} -values within the fill generally ranged from 35 to 87 bpf, indicating very dense compactness. Moisture contents ranged from approximately 5 to 10 percent in the predominantly medium dense fill materials, and from 8 to 15 percent in the lower, very dense fill materials.

Stratum I consisted of medium dense to dense native granular soils encountered underlying the embankment fill in Boring B-1 to a depth of 28 feet below existing grade (approximate Elev. 778). The granular soils consisted of coarse and fine sand (ODOT A-3a). SPT N_{60} -values of 44 blows per foot (bpf) and 23 bpf, as well as moisture contents of 20 percent and 15 percent, were determined for the recovered samples from this stratum.

Stratum II consisted of predominantly stiff cohesive soils encountered underlying the embankment fill in Boring B-2 to a depth of 23 feet (approximate Elev. 785). The cohesive soils consisted of silt and clay (ODOT A-6a). An SPT N_{60} -value of 13 bpf and a moisture content of 22 percent were determined for the recovered sample from this stratum.

Stratum III consisted of very stiff to hard cohesive soil encountered underlying Stratum I in Boring B-1, as well as underlying Stratum II in Boring B-2, to depths of 42 feet and $33\frac{1}{2}$ feet (approximate Elevs. 764 and 775), respectively. The Stratum III till deposits consisted of silt and clay (A-6a). SPT N₆₀-values ranged from 19 to 29 bpf. Unconfined compressive strengths ranged from approximately 5,000 to 9,000 pounds per square foot (psf). Moisture contents ranged from 13 to 16 percent.

Stratum IV consisted of predominantly stiff cohesive soil encountered underlying Stratum III to boring termination at a depth of 80 feet in each of the borings. The Stratum II cohesive soils consisted of silt and clay (A-6a), as well as silt (A-4b). SPT N_{60} -values ranged from 9 to 17 bpf. Unconfined compressive strengths generally ranged from approximately 1,500 to 3,000 psf. Moisture contents typically ranged from 16 to 18 percent.

4.4 Groundwater Conditions

Groundwater was initially encountered during drilling at depths of 18.8 feet and 23 feet below existing grades (approximate Elevs. 787 and 785) in Borings B-1 and B-2, respectively. Groundwater was not observed upon completion of drilling operations in either boring. It should be noted that each of the borings was drilled and backfilled within the same day. As such, stabilized water levels may not have occurred over this limited time period. Instrumentation was not installed to observe long-term groundwater levels.

Based on the soil characteristics and groundwater conditions encountered in the borings, it is our opinion that the "normal" long-term groundwater table will be generally encountered at depths of approximately 19 feet or lower, corresponding to approximate Elev. 787 or deeper. However, groundwater elevations can fluctuate with seasonal and climatic influences. In particular, "perched" water may be encountered in fill materials or granular soils that are underlain by relatively impermeable cohesive soils. Therefore, the groundwater conditions may vary at different times of the year from those encountered during this investigation.

5.0 DESIGN RECOMMENDATIONS

The following conclusions and recommendations are based on our understanding of the proposed construction and the data obtained during our field investigation. If the project information or location as outlined is incorrect or should change significantly, a review of these recommendations should be made by TTL. These recommendations are subject to satisfactory completion of the recommended site and subgrade preparation and fill placement operations described in Section 6.0, "Construction Recommendations."

5.1 <u>Temporary Bridge Structure Foundations</u>

We understand that the temporary bridge structure will be designed using LRFD specifications. For piles not driven to refusal on bedrock, the ODOT Bridge Design Manual (BDM) indicates that piles should be specified as CIP concrete piles with driven pipe shells. We have evaluated closed-end pipe shells. It is our recent experience that H-piles may be an economical alternative for the abutments. Therefore, we have also included recommendations in this report for use of H-piles.

It was assumed that there will be 2 feet of pile stick-up embedded in the pile caps. At the time of this report, LRFD Total Factored Loads were not available. Our analyses considered maximum Ultimate Bearing Values (R_{ndr}) prescribed by ODOT for commonly used pile sizes as summarized in the following table.

Table 5.1.A. ODOT Prescribed Maximum Ultimate Bearing Values (R _{ndr}) for Common Pile Sizes					
Pile Type/Size	Maximum R _{ndr} (kips)				
12-Inch CIP Pipe Pile	330				
14-Inch CIP Pipe Pile	390				
16-Inch CIP Pipe Pile	450				
HP 10x42 H-pile	350				

In every instance of our analysis, the maximum R_{ndr} was not encountered within the depth of exploration (i.e., the maximum R_{ndr} would be encountered at depths below the bottom of the borings). Therefore, our analyses considered lower R_{ndr} values.

ODOT Bridge Design Manual (BDM) Section 202.2.3.2.b indicates that, for piles not driven to refusal on bedrock, a dynamic resistance factor of 0.70 is to be utilized for piles installed in accordance with ODOT Construction and Materials Specifications (CMS) 507 and CMS 523. As such, maximum total factored loads (TFLs) for a certain pile size and type are

70 percent of the maximum R_{ndr} values presented in this section.

Pile resistance analyses were performed using FHWA pile analysis software DRIVEN. In the DRIVEN analyses, adhesion for cohesive soils was modeled using the Tomlinson method (1979), and resistance in the "cohesionless" soils were determined by the Peck, Hanson, and Thornburn method (1974), using SPT N_{60} -values.

Results of the DRIVEN analyses are attached to this report, and are summarized in the following table. The summary table below includes the estimated pile length and order length based on an **assumed** bottom of pile cap elevation. The estimated pile length includes the calculated length from anticipated pile cut-off elevation to pile tip elevation, rounded to the nearest 5 feet. The order length is the estimated length plus 5 feet.

Table	Table 5.1.B. West (Rear) Abutment Pile Foundation Recommendations – Temporary Bridge Structure									
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)				
			12" CIP	-	-	-				
		200	14" CIP	-	-	-				
		300	16" CIP	743	65	70				
			HP 10x42	-	-	-				
	807	250	12" CIP	-	-	-				
			14" CIP	748	65	70				
			16" CIP	754	55	60				
			HP 10x42	730	80	85				
		200	12" CIP	770	65	70				
805			14" CIP	755	55	60				
805			16" CIP	764	45	50				
			HP 10x42	744	65	70				
			12" CIP	757	50	55				
		150	14" CIP	767	40	45				
		150	16" CIP	775	35	40				
			HP 10x42	756	50	55				
			12" CIP	743	40	45				
		100	14" CIP	777	30	35				
		100	16" CIP	-	-	-				
			HP 10x42	770	40	45				

Table 5	Table 5.1.C. East (Forward) Abutment Pile Foundation Recommendations – Temporary Bridge Structure										
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)					
			12" CIP	-	-	-					
		200	14" CIP	-	-	-					
		300	16" CIP	729	75	80					
			HP 10x42	-	-	-					
	805	250	12" CIP	-	-	-					
			14" CIP	733	75	80					
			16" CIP	740	65	70					
			HP 10x42	-	-	-					
		200	12" CIP	737	70	75					
803			14" CIP	745	60	65					
803			16" CIP	751	55	60					
			HP 10x42	740	65	70					
			12" CIP	751	55	60					
		150	14" CIP	757	50	55					
		150	16" CIP	762	45	50					
			HP 10x42	754	50	55					
			12" CIP	765	40	45					
		100	14" CIP	769	35	40					
		100	16" CIP	-	-	-					
			HP 10x42	767	35	40					

DRIVEN analyses indicate that the CIP piles and H-piles are expected to achieve the required resistance upon being driven to the Stratum IV predominantly stiff cohesive soil.

Since skin friction resistance was not considered within the existing embankment fill materials in the upper $8\frac{1}{2}$ feet (extending to Elev. $582\pm$), varying the bottom of abutment elevation and/or the pile stick-up in the pile cap will not result in a different minimum recommended pile tip elevation from what is presented in the above table, provided the bottom of abutment elevation is at or above Elev. 582. However, the estimated and order pile lengths in the above table would require re-evaluation.

ODOT specifications indicate that the maximum center-to-center spacing of driven piles should be 8 feet in capped pile abutments. The maximum center-to-center spacing of driven piles should be 7 feet for the front row of wall-type abutments. Although close pile spacing is not anticipated, we recommend that the minimum center-to-center spacing for piles be 3 pile diameters to avoid superposition of stresses and possible reduction in group resistance due to close spacing.

A static pile load test (ASTM D 1143) is required only if the total pile order length for an individual structure exceeds 10,000 feet for piling of the same size and R_{ndr}. As such, a static pile load test is not expected to be required for this project. As mentioned previously, pile design is based on piles installed in accordance with ODOT CMS Item 523 "Dynamic Load Test." ODOT requires dynamic load testing to establish the driving criteria (i.e., blow count) for all piling not driven to refusal on bedrock. For an individual structure, the designer shall specify one dynamic load testing item for each pile size. If multiple pile capacities are required for a given pile size, the designer shall specify one testing item for each R_{ndr}. Although not anticipated, if static load tests are required, additional provisions include two dynamic load testing a minimum of two piles and performing a Case Pile Wave Analysis Program (CAPWAP) analysis on one of the two piles. One restrike item consists of performing dynamic testing on two piles and performing CAPWAP analysis on one of the two piles. Driven piles should be installed under adequate specifications and monitored by a qualified geotechnical engineer.

Although cobbles and/or boulders were not encountered during this investigation, they are not uncommon in glacial till soils, particularly in the lower-profile very stiff to hard soils. If cobbles or boulders are encountered, these conditions could hamper pile-driving operations and possibly damage some piles. If piles are observed to meet refusal at a depth/elevation less than that indicated above, cobble or boulder obstruction may be indicated. For an isolated occurrence, one or more replacement piles could be driven with relatively little additional cost on pile cap re-design. If persistent boulder conditions are indicated, a static pile load test should be performed in accordance with the standard referenced above to evaluate the bearing resistance of the pile(s).

5.2 Bridge Foundations

We understand that the existing bridges are 3-span structures, with abutments on pile foundations and piers on shallow foundations.

5.2.1 Shallow Foundations

Based on the retrieved as-built drawings, the shallow pier foundations are indicated to bear at Elev. 782. We understand that the proposed foundations will be tied into the existing foundations.

Based on the results of the field and laboratory testing for the borings performed for this investigation, the soils encountered at the anticipated foundation bearing elevation of Elev. 782 are expected to consist of Stratum I medium dense granular soils as well as Stratum III very stiff to hard cohesive soil, which are considered generally suitable for support of the proposed foundations. If loose granular soils are encountered, they will require in-place densification using a backhoe-mounted vibratory compactor (hoe-pac) or similar equipment to provide a consistent bearing stratum and reduce post-construction settlement. Otherwise, the granular soils could be over-excavated and replaced with new granular engineered fill as described below.

It should be noted that foundation bearing materials may also consist of new engineered fill utilized to achieve design grades after stripping and removal of topsoil, depending on site grading.

If the excavated subgrade reveals loose soils at footing bearing elevation, additional in-place modification must be performed using a backhoe-mounted vibratory compactor (hoe-pac) or similar equipment to achieve a consistent bearing stratum. However, if groundwater is present during excavation, excessive vibratory compaction may be detrimental to the footing subgrade, and compaction by "static" methods or removal and replacement with new engineered fill would be required. Temporary lowering of elevated water levels using one or more wellpoints will also help in modifying the granular soils in place.

Suitable compaction/bearing of granular foundation soils can be verified as:

- Exhibiting a compacted (in-situ) dry density of at least 100 percent of the maximum dry density determined by Supplement 1015,
- A dynamic cone penetrometer (DCP) reading of at least 12 blows per increment (average over three increments), or
- Other methods to demonstrate an equivalent SPT N-value of 15 bpf or greater.

Although not anticipated to be prevalent, if granular soils cannot be suitably re-compacted in-place, or other unsuitable foundation soils are encountered, over-excavation should extend through these materials to suitable bearing soils. The over-excavated areas should be backfilled with a low strength mortar backfill meeting the requirements of ODOT 613.

Following the satisfactory completion of the site preparation and footing excavation inspections outlined in Section 6.0 of this report, the proposed structures may be supported

on conventional shallow spread foundation systems consisting of wall (strip) and/or column (square) footings. Shallow foundations may be designed utilizing a net allowable bearing pressure of 4,000 pounds per square foot (psf). In using a net allowable soil pressure, the weight of the footings, backfill over the footings or floor slabs need not be included in the structural loads for dimensioning footings. The bearing materials should be field-verified as being native silt and clay (ODOT A-6a) exhibiting an unconfined compressive strength of 4,000 psf or greater, native coarse and fine sand (A-3a) meeting the above compaction/density requirements, or properly placed and compacted new engineered fill.

Due to the existing development and high groundwater table, we strongly recommend that the bearing surface at the bottom of all footing excavations be inspected during construction by a TTL geotechnical engineer or qualified representative. Inspection should be performed to verify that the exposed soil conditions at the bearing elevations are consistent with the subsurface conditions encountered in the test borings and are suitable for foundation bearing. Additionally, the presence of our engineer will help facilitate the timely remediation of unsuitable soil conditions. If the results of hand penetrometer, DCP, or other strength tests indicate the exposed soil conditions are not suitable for the design bearing pressure, it may be necessary to increase the footing size to accommodate the lower bearing strengths or to over-excavate and backfill with engineered fill or flowable fill.

Care should be taken where over-excavation is required in the proximity of existing foundations such that the existing foundations are not undermined. Temporary bracing or sheeting may be required if over-excavation is required in these areas.

All exterior footings and footings in unheated areas should be constructed at a minimum frost penetration depth of 3½ feet below finished exterior grades (assumed at Elev. 782). It should be noted that use of trench footings (i.e., placement of foundation concrete without forming) may not be feasible due to the granular nature of the bearing soils encountered in Boring B-1, along with the high groundwater table. Forming of footings and backfilling around CMU or poured foundation walls should be anticipated in areas of granular bearing soils.

Settlement of the structure foundations was calculated based on conventional consolidation theory utilizing the recompression index for the over-consolidated clays. Utilizing a maximum net allowable bearing pressure of 4,000 psf, the differential settlement associated with the structure should not exceed ¹/₄ inch.

5.2.2 Driven Pile Foundations

Based on the retrieved as-built drawings, the abutment piles are indicated to be HP10x42 Hpiles and have estimated lengths of 33 feet below approximate Elev. 805 with a maximum load of 21 tons along Pile Line "N," as well as 28 feet below approximate Elev. 796 with a maximum load of 18 tons along Pile Line "M." Additionally, the piles along Pile Line "M" are indicated at a battered ratio of 1 horizontal to 4 vertical (1H:4V). Stickup is shown to be 1 foot vertical within each footing.

For our analyses, we considered the inside lanes of the existing bridges with average Pile Line "N" elevations of Elev. 805 at the west (rear) abutment and Elev. 803 at the east (forward) abutment, and average Pile Line "M" elevations of Elev. 798 at the west (rear) abutment and Elev. 797 at the east (forward) abutment. Loads for the bridge expansion were unavailable at the time of preparing this report, so our analyses considered the maximum Ultimate Bearing Values prescribed by ODOT for commonly used pile sizes, as well as lower Ultimate Bearing Values. Additionally, we conservatively considered a more common pile stickup of 2 feet.

We anticipate that the bridge expansion will consist of the same structural elements and loading as the existing structure, and have performed our evaluation as such.

Pile resistance analyses were performed for each substructure location using FHWA pile analysis software DRIVEN. In the DRIVEN analyses, adhesion for cohesive soils was modeled using the Tomlinson method (1979), and capacities in the "cohesionless" soils were determined by the Peck, Hanson, and Thornburn method (1974), using SPT N-values to estimate the internal angle of friction (ϕ).

Results of the DRIVEN analyses are attached to this report, and are summarized in the following table. Recommended minimum tip bearing elevations for the H-piles were determined from DRIVEN analyses that included a factor of safety of 2, assuming load tests will be performed. The summary table includes the estimated pile length and order length for each abutment. The estimated pile length includes the calculated length from anticipated pile cut-off elevation to pile tip elevation, rounded upward to the nearest 5 feet. The order length is the estimated length plus 5 feet.

Table 5.2.2.A. West (Rear) Abutment Pile Foundation Recommendations – Existing Bridge Structure Pile Line "N"							
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ultimate Bearing Value (kips)	Service Load (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)
				12" CIP	-	-	-
		300	150	14" CIP	-	-	-
		500	150	16" CIP	IP - - IP - - IP 743 65 IP 743 65 IP 743 65 IP - - IP - - IP 748 65 IP 754 55 60 80 85 IP 770 65 70		
				HP 10x42			
	807	250	125	12" CIP	-	-	-
				14" CIP	748	65	70
				16" CIP	754	55	60
				HP 10x42	730	80	85
		200	100	12" CIP	770	65	70
805				14" CIP	755	55	60
805	807			16" CIP	764	45	50
				HP 10x42	744	65	70
				12" CIP	757	50	55
		150	75	14" CIP	767	40	45
		150	15	16" CIP	775	35	40
				HP 10x42	756	50	55
				12" CIP	743	40	45
		100	50	14" CIP	777	30	35
		100	50	16" CIP	-	-	-
				HP 10x42	770	40	45

Table 5.2.2.B. West (Rear) Abutment Pile Foundation Recommendations – Existing Bridge Structure Pile Line "M"							
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ultimate Bearing Value (kips)	Service Load (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)
				12" CIP	-	-	-
		300	150	14" CIP	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		300	150	16" CIP	743		
				HP 10x42	P - - - P - - - P 743 60 65 42 - - - P - - - P - - - P 748 60 65 P 754 45 50 42 720 70 75		
		250	125	12" CIP	-	-	-
				14" CIP	748	60	65
				16" CIP	754	45	50
				HP 10x42	730	70	75
		200	100	12" CIP	770	60	65
708	800			14" CIP	755	45	50
/98				16" CIP	764	40	45
				HP 10x42	744	55	60
				12" CIP	757	45	50
		150	75	14" CIP	767	35	40
		150	15	16" CIP	775	25	30
				HP 10x42	756	45	50
				12" CIP	743	30	35
		100	50	14" CIP	777	25	30
		100	50	16" CIP	-	-	-
				HP 10x42	770	30	35

Table 5.2.2.C. East (Forward) Abutment Pile Foundation Recommendations – Existing Bridge Structure Pile Line "N"											
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ultimate Bearing Value (kips)	Service Load (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)				
803	805	300	150	12" CIP	-	-	-				
				14" CIP	-	-	-				
				16" CIP	729	75	80				
				HP 10x42	-	-	-				
		250	125	12" CIP	-	-	-				
				14" CIP	733	75	80				
				16" CIP	740	65	70				
				HP 10x42	-	-	-				
		200	100	12" CIP	737	70	75				
				14" CIP	745	60	65				
				16" CIP	751	55	60				
				HP 10x42	740	65	70				
		150	75	12" CIP	751	55	60				
				14" CIP	757	50	55				
				16" CIP	762	45	50				
				HP 10x42	754	50	55				
		100	50	12" CIP	765	40	45				
				14" CIP	769	35	40				
				16" CIP	-	-	-				
				HP 10x42	767	35	40				

Table 5.2.2.D. East (Forward) Abutment Pile Foundation Recommendations – Existing Bridge Structure Pile Line "M"										
Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ultimate Bearing Value (kips)	Service Load (kips)	Pile Type and Size	Recommended (Minimum) Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)			
	799	300	150	12" CIP	-	-	-			
				14" CIP	-	-	-			
				16" CIP	729	70	75			
				HP 10x42	-	-	-			
		250	125	12" CIP	-	-	-			
				14" CIP	733	65	70			
				16" CIP	740	60	65			
				HP 10x42	-	-	-			
		200	100	12" CIP	737	65	70			
797				14" CIP	745	55	60			
				16" CIP	751	50	55			
				HP 10x42	740	60	65			
		150	75	12" CIP	751	50	55			
				14" CIP	757	45	50			
				16" CIP	762	40	45			
				HP 10x42	754	45	50			
		100	50	12" CIP	765	35	40			
				14" CIP	769	30	35			
				16" CIP	-	-	-			
				HP 10x42	767	35	40			

DRIVEN analyses performed for each substructure location indicate that the HP 10x42 piles are expected to generally drive into the Stratum IV predominantly stiff cohesive soil to achieve the required resistance.

Battered piles are indicated for this project, it should be noted that the estimated lengths in the above table do not include additional allowance for battered piles. In any case, additional allowance for battered piles is expected to be on the order of only 1 foot for the indicated lengths, within the 5-foot add-on for order length determination, using piles battered at 1 horizontal to 4 vertical (1H:4V).

Driven piles should be installed in accordance with ODOT Construction and Material Specifications (CMS) Items 507 and 523. The bearing capacity of each pile must be substantiated in the field with dynamic driving records in accordance to ODOT Item 507.05, specifically using the results of dynamic pile testing as specified in Item 523. It should be also noted that the Ohio Building Code (OBC) requires load tests for any piles with allowable compressive load above 40 tons and, in the case of driven piles, the OBC also

requires wave equation analysis to evaluate stresses during driving. For driven piles, dynamic load tests may be performed using a pile driving analyzer, in accordance with ASTM D 4945, "Standard Test Method for High-Strain Dynamic Testing of Piles." Dynamic load testing is quicker and less expensive that static load testing, and has become the more prevalent test method for driven piles. During the installation of the first pile at each of the bridge substructures, if the ultimate bearing value (R) of a driven pile does not meet or exceed the bearing capacity presented on the construction plans, we recommend that a static load test be performed on a test pile to evaluate the ultimate bearing capacity of the pile. The static load test should be performed in accordance with ODOT Item 506 and ASTM D 1143, "Standard Test Method for Piles Under Static Axial Compressive Load." Driven piles should be installed under adequate specifications and monitored by a qualified geotechnical engineer.

Evidence of cobbles or boulders was not encountered in the limited borings drilled for this investigation. However, the presence of cobbles or boulders within the glacial till encountered in the lower soil profile at this site would not be unusual for this region, and these conditions could hamper pile-driving operations and possibly damage some piles. Review of bedrock topography maps indicates that the bedrock surface is on the order of Elevs. 600 to 580 in the vicinity of the project site, nominally 210 to 230 feet below existing grades. Therefore, bedrock is not anticipated to be encountered based on the pile order lengths recommended above. If piles are observed to meet refusal at a depth/elevation less than that indicated above, boulder obstruction may be indicated. For an isolated occurrence, one or more replacement piles could be driven with relatively little additional cost on pile cap re-design.

5.3 Groundwater Control

As stated previously, groundwater was initially encountered during drilling at depths of 18.8 feet and 23 feet below existing grades (approximate Elevs. 787 and 785) in Borings B-1 and B-2, respectively.

Based on the soil and groundwater conditions encountered in the borings, it is our opinion that the "normal" long-term groundwater table will be generally encountered at depths of approximately 19 feet or lower, corresponding to approximate Elev. 787 or deeper. Therefore, construction planning should include potential remedial measures to be implemented where excessive groundwater seepage or unstable subgrades are encountered in the foundation excavations. Dewatering methods may include multiple sumps or a system of

well points. The type of dewatering system utilized will depend on construction practices, soil conditions encountered in the foundation excavations, seasonal conditions, and the depth of excavation. Additionally, the contractor will need to exercise diligence to control seepage and runoff to maintain a stable subgrade.

5.4 Excavations and Slopes

The sides of temporary excavations for foundations, utility installations, and other construction should be adequately sloped to provide stable sides and safe working conditions. Otherwise, the excavation must be properly braced against lateral movements. In any case, applicable OSHA safety standards must be followed.

Based on the test borings, it is likely that excavations will encounter a range of soil conditions that include the following OSHA designations:

- Type A soils (cohesive soils with unconfined compressive strengths of 3,000 pounds per square foot (psf) or greater),
- Type B soils (cohesive soils with unconfined compressive strengths greater than 1,000 psf but less than 3,000 psf), and
- Type C soils (fill materials and granular soils).

For temporary excavations in Type A, B, and C soils, side slopes must be no steeper than ³/₄ horizontal to 1 vertical (³/₄H:1V), 1H:1V, and 1¹/₂H:1V, respectively. For situations where a higher strength soil is underlain by a lower strength soil and the excavation extends into the lower strength soil, the slope of the entire excavation is governed by that required for the lower strength soil. In all cases, flatter slopes may be required if lower strength soils or adverse seepage conditions are encountered during construction.

For permanent excavations and slopes, we recommend that grades be no steeper than 3H:1V without a more extensive geotechnical evaluation of the proposed construction plans and site conditions.

6.0 CONSTRUCTION RECOMMENDATIONS

6.1 <u>Site Preparation</u>

Site preparation activities should include the removal of topsoil, root mats, vegetation, pavements, and other deleterious non-soil materials from all proposed construction areas. Suitable topsoil may be stockpiled for later use in landscaped areas. The actual amount of required stripping should be determined in the field by a geotechnical engineer or qualified representative.

6.2 <u>Fill</u>

Material for engineered fill or backfill required to achieve design grades should meet ODOT Item 203 "Embankment Fill" placement and compaction requirements. In general, suitable fills may consist of any non-organic soils having a maximum dry density as determined by Supplement 1015 of 90 pounds per cubic foot (pcf) or greater. On-site soils may be used as engineered fill materials provided that they are free of organic matter, debris, excessive moisture, and rock or stone fragments larger than 3 inches in diameter. Depending on seasonal conditions, the on-site soils may be wet of optimum and may require scarification and aeration to achieve satisfactory compaction. If the construction schedule does not allow for scarification and aeration activities, it may be more practical or economical to utilize imported granular fill.

Fill should be placed in uniform layers not more than 8 inches thick (loose measure) and adequately keyed into stripped and scarified soils. All fill placed within pavement areas should be compacted to a dry density consistent with the requirements of ODOT Item 203, based on the maximum dry density as determined by Supplement 1015.

The on-site soils consist of granular fill materials underlain by native granular and cohesive soils. For the cohesive soils, a sheepsfoot roller should provide the most effective soil compaction. For granular soils, or if new granular engineered fill is placed, a vibratory smooth-drum roller would be required to provide effective compaction.

Scarified subgrade soils and all fill material should be within 3 percent of the optimum moisture content to facilitate compaction. Furthermore, fill material should not be frozen or placed on a frozen base. It is recommended that all earthwork and site preparation activities

be conducted under adequate specifications and properly monitored in the field by a qualified geotechnical testing firm.

6.3 <u>Foundation Excavations</u>

As mentioned previously, shallow foundations used to support the structure should have a detailed footing inspection performed in each spread or column foundation excavation. These inspections should be performed by a TTL geotechnical engineer or qualified representative to verify that the exposed materials are similar to those encountered in the borings and/or the engineered fill has been satisfactorily placed and compacted.

We recommend that the foundation excavations be concreted as soon as practical after they are excavated and that water not be allowed to pond in any excavation. If it is necessary to leave the bearing surface open for any extended period of time, we recommend that a thin mat of lean concrete be placed over the bottom of the excavation to reduce damage to the surface from weather or construction. Foundation concrete should not be placed on frozen or saturated subgrade.

Additional foundation excavation recommendations are presented in Section 5.1.

7.0 QUALIFICATIONS OF RECOMMENDATIONS

Our evaluation of design and construction conditions for bridge foundations has been based on our understanding of the site and project information and the data obtained during our field investigation. The general subsurface conditions were based on interpretation of the subsurface data at specific boring locations. Regardless of the thoroughness of a subsurface investigation, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. Therefore, experienced geotechnical engineers should observe earthwork and foundation construction to confirm that the conditions anticipated in design are noted. Otherwise, TTL assumes no responsibility for construction compliance with the design concepts, specifications, or recommendations.

The evaluations and recommendations presented in this report have been formulated on the basis of reported or assumed data relating to the location and finished grades for the proposed structure. Any significant change in this data in the final design plans should be brought to our attention for review and evaluation with respect to the prevailing subsoil conditions.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.

Our professional services have been performed and our findings have been derived in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TTL is not responsible for the conclusions, opinions, or recommendations of others based on this data.

	PROJECT:		DRILLING FIRM / OPER		TTL /	TB	DRIL		:(STAT		/ OF	FSET	Г:				EXPLOR	ATION ID
		BR ID.	DRILLING METHOD	э <u>с</u> к3	25" HSA			BRAT			1/10/17	,	FI F			806 () (MS	SI) F	OB.	8	0.0.ft	PAGE
	START: 1	1/1/17 END: 11/1/17	SAMPLING METHOD:		SPT		ENE	RGY F	RATIO	(%):	80.3		LAT	LON	NG:		<u>, ,,,,</u>	Not F	Recor	ded		1 OF 3
		MATERIAL DESCRIPT		ELEV.	DEDT		SPT/	N	REC	SAMPLE	HP		GRAD	ATIC)N (%	b)	ATT	ERB	ERG		ОДОТ	BACK
		AND NOTES		806.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	TOPSOIL -	12 INCHES	\sum	805.0																		
	MEDIUM DE	ENSE, BROWN, COARSE AND	FINE SAND,				3	20	100	CC 1										F	A 20 00	
		T AND TRACE CONCRETE FR	AGMENTS,	000.0		_ 2 _	5	20	100	33-1	INP	-	-	-	-	-	-	-	-	Э	A-38 (V)	4>1-45
	LOOSE BR	OWN COARSE AND FINE SAM		803.0	-	- 3 -																1212
	AND TRACE	E GRAVEL, MOIST EMBANKM	ENT FILL			- 4 -	3	8	100	SS-2	NP	_	_	_	_	_	_	_	_	۵	A-32 (V)	
			••••• •••••			L 5 L	<u> </u>		100	00-2			_		_	_			_	5	7-50 (V)	
			• • • • • • • • • • • • • • • • • • •	800.0		6 -																12 12
		ENSE, BROWN, COARSE AND					3 4	15	100	SS-3	NP	-	_	_	_	_	-	_	-	10	A-3a (V)	
	EMBANKME	ENT FILL		798 0		F'	7															
	VERY DEN	SE, BROWN, COARSE AND FI	NE SAND,			- 8 -	10															
	LITTLE SIL	T, MOIST EMBANKMENT FILL				9 -	18	51	100	SS-4	NP	-	-	-	-	-	-	-	-	10	A-3a (V)	A CONTRACT
٦			· · · · · · · · · · · · · · · · · · ·			- 10 -	20															A Latere
2.GP			•••••• ••••••			- 11 -																
07.02			• • • • • • • • • • •			- 12																7678
\158	@12': GRA	Y/BROWN	•••••• •••••• •••••• ••••••			- 13																
ECTS			• • • • • • • • • •				12															
ROJE						- 14 -	17	54	100	SS-5	NP	-	-	-	-	-	-	-	-	10	A-3a (V)	
S:\PI						- 15 -																A L AND
:17 -			• • • • • • • • • • •																			ALLEND T
7 10				788.5		- 17 -																4>1
1/8/1	DENSE, GR	RAY, COARSE AND FINE SAND), LITTLE SILT,			- 18 -																7 L 7 L
T - 1	WEI (FREE	WATER NUTED IN JAR)	• • • • • • • • • • •		W	- 19 -	9	11	100	22.6										20	A 20 () ()	
T.GD						- 20 -	<u>15</u>	44	100	33-0		-	-	-	-	-	-	-	-	20	A-34 (V)	A LY COL
DO			•••••• ••••••			- 20 -																17117
¢ '						- 21 -																J Z J Z
X 11)			•••••• ••••••	783.0		- 22																Fart and
(8.5	MEDIUM DE	ENSE, GRAY, COARSE AND F	INE SAND,	700.0	-	23 -																
00	SOME SILT	AND TRACE CLAY, MOIST				- 24 -	4	23	100	SS-7	NP	0	2	65	32	1	NP	NP	NP	15	A-3a (0)	A PART
NGL			•••••• ••••••			- ₂₅ -	11														. ,	A Valence
30RI			•••••• ••••••			26 -																NY NEW
OILE			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			- 27 -																NOR VX
OT S			• • • • • • • • • • •	778.0																		AND A
) OD(VERY STIF	F, GRAY, SILT AND CLAY, LIT	TLE SAND AND]	- 28	4															
ARD	TRACE GR	AVEL, MOIST				- 29 -	6	21	100	SS-8	3.00	3	6	11	23	57	26	15	11	15	A-6a (8)	47 J X 4000 < 2
AND						- 30 -	10															- 9 - AD
SI			V///																			ex, state

PID:	BR ID:	PROJECT:	OTIC MP 34.5		STATION	/ OFFSI	ET:			S ⁻	TART	: 11	/1/17	_ El	ND:	11/	1/17	_ P	G 2 OI	F 3	B-1
	MATERIAL DESCRIP	TION	ELEV.			SPT/	N	REC	SAMPLE	HP	G	RAD	ATIC) N (%	o)	ATT	ERBE	ERG		ODOT	BACK
	AND NOTES		775.0	DEI	PIHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
VERY STIFF, (TRACE GRAV	GRAY, SILT AND CLAY , LI ⁻ EL, MOIST <i>(continued)</i>	TTLE SAND AND			- 32 - 33 -	-															
					- 34 -	4 9 13	29	100	SS-9	3.50	-	-	-	-	-	-	-	-	15	A-6a (V)	
						-															
					- 38 -	5 6	21	100	SS-10	2.51*	-	-	-	-	-	-	-	-	16	A-6a (V)	
			764.0		- 40 - - 41 -	<u>10</u> - - -															
STIFF, GRAY, TRACE GRAV	SILT AND CLAY , LITTLE S EL, MOIST	AND AND			- 42 - - 43 -	2															N T W
					- 44 - - 45 - 	4 5	12	100	SS-11	1.00	4	5	11	23	57	27	14	13	17	A-6a (9)	
					- 46 - - 47 -	-															
					- 48 - - 49 - - 50	3 4 6	13	100	SS-12	1.50	-	-	-	-	-	-	-	-	17	A-6a (V)	
					51 - 51 - 52 -																
					53 - 54 - 55 -	2 4 6	13	100	SS-13	1.09*	-	-	-	-	-	-	-	-	17	A-6a (V)	
					- 56 - - 57 -	-															
@58.5': SOME	SAND				- 58 - - 59 -	³ 4	13	100	SS-14	NI	4	7	14	21	54	27	13	14	17	A-6a (10)	
					- 60 - - 61 - - 62 -	- <u>6</u> 															
					63 -	3															

PID: BR ID: PROJECT:OTIC MP 34.5STATION / OFFSET: START:/I1/1/17 END:/11/1/7 Pr	G 3 OF 3 B-1
MATERIAL DESCRIPTION ELEV. DEPTHS SPT/ N REC SAMPLE HP GRADATION (%) ATTERBERG	ODOT BACK
AND NOTES 741.8 RQD N60 (%) ID (tsf) GR CS FS SI CL LL PL PI	WC CLASS (GI) FILL
STIFF, GRAY, SILT AND CLAY, LITTLE SAND AND	18 A-ba (V)
-69 - 3 12 100 SS 16 1 50	
	10 A-00 (V)
	No and Andrews
	ALL ALL
732.5	
MEDIUM STIFF TO STIFF, GRAY, SILT AND CLAY,	
LITTLE GRAVEL AND SAND, MOIST	16 A-6a (9) A
	The The
	NOD VX
	470000 4 3 > 10000
	17 A-0d (V) 9 L and \$300 9
NOTES: "*" - UNCONFINED STRENGTH DETERMINED BY ASTM D 2/166 "NP" - NON-PI ASTIC. "NI" - NOT INTACT	
ARANDONMENT METHODS MATERIALS OUANTITIES' AUGER CUTTINGS MIXED WITH A BAGS BENTONITE CHIPS	

Image: state indication in the image in	80.0 ft. ded WC CLASS (GI) 9 A-3a (0) 10 A-3a (V)	PAGE 1 OF 3 BACK FILL
START: 10/30/17 ENCLEMENTION SAMPLING METHOD: SPT ENERGY RATIO (%): 80.3 LAT / LONG: Not Record MATERIAL DESCRIPTION AND NOTES ELEV. DEPTHS SPT/ RQD No REC SAMPLE HP GRADATION (%) ATTERBERG 000.5	00.5 n. ded WC CLASS (GI) 9 A-3a (0) 10 A-3a (V)	1 OF 3 BACK FILL
MATERIAL DESCRIPTION AND NOTES ELEV. 808.0 DEPTHS SPT/ RQD REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG TOPSOIL - 10 INCHES 807.2 -	ODOT CLASS (GI) 9 A-3a (0) 10 A-3a (V)	BACK FILL
AND NOTES DEPTHS OF PTHS No No <td>9 A-3a (0)</td> <td>FILL</td>	9 A-3a (0)	FILL
TOPSOIL - 10 INCHES 807.2	9 A-3a (0) 10 A-3a (V)	
	9 A-3a (0) 10 A-3a (V)	
MEDIUM DENSE, BROWN, COARSE AND FINE SAND,	9 A-3a (0) 10 A-3a (V)	
	10 A-3a (V)	
	10 A-3a (V)	111 11
	10 A-3a (V)	R Star
7 23 89 SS-2 NP		AL AL
		A LY DEL
		177 17
	10 A-3a (V)	alling a
10 - 9 - 10 = 10 18 - 59 = 100 = SS-4 = NP =	8 A-3a (V)	A del 1 h
		A Valence
		Sugar Since
		76 16
		Salar a
		CTALLAN ST
14 - 14 - 12 87 100 SS-5 NP	15 A-3a (V)	71 71
		STO S
		SAN F
		TUTE
		RISK S
-19 - 3	22 A-6a (10)	
STIFF, GRAT/BROWN, SILT AND CLAY, SOME SAND, -20 -6 -20 -6 -20 -2	22 7-00 (10)	A L'ADL
		17117
		aller a
		AUX add
SAND AND TRACE GRAVEL, DAMP -24	15 0.0-00	A CONTRACT
	15 A-0a (V)	A Valenti
		Supe and
		7676
		San i
		TL TL
$\begin{bmatrix} 20 & 6 & 20 & 100 & SS-8 & 3.60^* & 6 & 8 & 17 & 29 & 40 & 27 & 14 & 13 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9$	13 A-6a (8)	Serre S
		ABADA A

PID:	_ BR ID:	PROJECT:	OTIC MP	34.5	ST	ATION	OFFSE	ET:			S	TART	: <u>10/</u>	30/17	7 EN	ND: _	10/3	0/17	_ P(G 2 OI	= 3 I	B-2
	MATERIAL I	DESCRIPTION	EL	LEV.		Le	SPT/	N	REC	SAMPLE	HP	G	RAD	ATIC	N (%)	ATT	ERB	ERG		ODOT	BACK
	AND	NOTES	7	77.0	DEPTI	13	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
VERY STIFF SAND AND 1	TO HARD, GRAY, RACE GRAVEL, D	SILT AND CLAY, SOME AMP (continued)	7	74 5		32	-															
MEDIUM STI LITTLE SAN	IFF TO STIFF, GRA D AND TRACE GRA	Y, SILT AND CLAY , AVEL, MOIST				- 34 - 35 - 36 -	3 3 4	9	100	SS-9	0.75	-	-	-	-	-	-	-	-	18	A-6a (V)	
STIFF, GRA	Y, SILT , "AND" SAN	ID, TRACE CLAY, MOIST	77 ++++ ++++ ++++ ++++ ++++	71.0		- 37 - - 37 - - 38 -	3															
			++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++	66.0		40 41	45	12	100	SS-10	0.50	0	4	35	53	8	23	14	9	14	A-4b (5)	
STIFF, GRAY TRACE GRA	Y, SILT AND CLAY , VEL, MOIST	LITTLE SAND AND				- 42 - - 43 - - 43 -	3															
						- 45 - - 46 -	35	11	100	SS-11	NI	-	-	-	-	-	-	-	-	18	A-6a (V)	
						47 48 49	3 3	9	100	SS-12	1.00	_	-	-	-	-	-	_	_	18	A-6a (V)	
						50 51 52 53																
						- 54 - - 55 - - 56 -	3 4 5	12	100	SS-13	1.00	6	5	12	27	50	31	17	14	19	A-6a (10)	
						58 59	3 4 5	12	100	SS-14	1.00	-	-	-	-	-	-	-	-	18	A-6a (V)	
MOIST @63.	5': MEDIUM STIFF	TO STIFF				- 61 - - 62 - - 63 -	0															

PID:	BR ID:	PROJECT: OT	C MP 34.5		STATI	ON /	OFFS	ET:			S	TART	T: 10/	/30/1	7 E	ND:	10/3	80/17	Р	G 3 O	= 3	B-2
	MATERIAL DESCRI	PTION	ELEV.				SPT/		REC	SAMPLE	HP		GRAD	ATIC)N (%	5) -	ATT	ERB	ERG		ODOT	BACK
	AND NOTES		743.8		PIHS		RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
STIFF, GRAY,	SILT AND CLAY, LITTLE S	SAND AND			F	_	2	8	100	SS-15	1.25	-	-	-	-	-	-	-	-	18	A-6a (V)	Ser <
TRACE GRAV	EL, MOIST (continued)				- e	55 -	4															CARDON 9
					— e	6 —																
					-																	
		ľ				<i>"</i> –																7 L 7 L
					— e	68 —																2 - 16
MOIST @68.5	': STIFF				Fε	<u>89 – </u>	3 _	15	100	CC 16	1 00									10	A 60 () ()	22 12
						70	56	15	100	33-10	1.00	-	-	-	-	-	-	-	-	10	A-0a (V)	In Lange
					F'																	
					- 7	71 —																
					F 7	72 –																Faits and
					F'	′ <u> </u>																A teller 1 h
					- 7	74 —	3 4	13	100	SS-17	1 00	-	-	-	_	_	-	-	_	18	A-6a (V)	
					Ē-7	75 –	<u>6</u>															JEAN DE
					- <u>-</u>																	THE THE
					F '	⁷⁶																XV
					- 7	77 —																Allen a
					Ē.7	78 –																CRIIR Say
@78 5'- STIFE					- <u>-</u>		3															1×
@70.5.51111			700 0		F'	′9 –	⁶	17	100	SS-18	1.25	-	-	-	-	-	-	-	-	18	A-6a (V)	A F and
		· · · · · · · · · · · · · · · · · · ·	// 120.0	EOE	3———8	30-																84900 Y
NOTES: "*" -	UNCONFINED STRENGT	H DETERMINED BY AST	<u>M D 2166.</u>	<u>"NP" - N</u>	ION-PL	<u>ASTI</u>	<u>C. "NI'</u>	<u>' - NO</u>	T INTA													
ABANDONME	<u>NT METHODS, MATERIAL</u>	<u>_S, QUANTITIES: AUGE</u>	R CUTTIN	<u> SS MIX</u>	<u>ED WIT</u>	H 4 E	BAGS	BENT	ONITE	<u>CHIPS</u>												

PROJECT: C	OTIC MP 34	1.5 Bridge W	idening, F	ulton Coun	nty, OH		TTL	Asso	ciates,	Inc.]	PROJEC	CT NO:	15807	02
						TABUI	LATION	OF	TES	Γ D Α	ТА						
			ion , N _m	on, N ₆₀			rength			Pa Dis	rticle Si tributio	ize n (%)		A I	Atterber Limits (g %)	
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrat (Blows per Fool)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)	In-Place Dry Density (Pounds per Cubic Foot)	Unconfined Compressive St (Pounds per Square Foot)		Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-1	SS-1	1.0-2.5	15	20	5.2												
	SS-2	3.5-5.0	6	8	8.9												
	SS-3	6.0-7.5	11	15	10.4												
	SS-4	8.5-10.0	38	51	9.9												
	SS-5	13.5-15.0	40	54	9.6												
	SS-6	18.5-20.0	33	44	20.0												
	SS-7	23.5-25.0	17	23	14.5				0	2	65	32	1	NON	N-PLAS	STIC	A-3a (0)
	SS-8	28.5-30.0	16	21	15.1		6,000		3	6	11	23	57	26	15	11	A-6a (8)
	SS-9	33.5-35.0	22	29	14.9		7,000										
	SS-10	38.5-40.0	16	21	15.7	119.2	*5,030										
	SS-11	43.5-45.0	9	12	16.9	112.5	2,000		4	5	11	23	57	27	14	13	A-6a (9)
	SS-12	48.5-50.0	10	13	17.0		3,000										
	SS-13	53.5-55.0	10	13	17.1	112.5	*2,180										
	SS-14	58.5-60.0	10	13	16.5				4	7	14	21	54	27	13	14	A-6a (10)
	SS-15	63.5-65.0	11	15	17.9		3,000										
	SS-16	68.5-70.0	9	12	17.6		3,000										

PROJECT: C	OTIC MP 34	4.5 Bridge W	idening, F	ulton Coun	ty, OH		TTL	Assoc	ciates,	Inc.]	PROJEC	CT NO:	15807	02
						TABUI	LATION	OF	TES	T DA	ТА						
			ion , N _m	on, N ₆₀			rength			Pa Dis	article S stributio	ize n (%)		A I	Atterber Limits (g %)	
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrati (Blows per Foot)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)	In-Place Dry Density In-Place Dry Density Outconfined Compressive S			Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-1	SS-17	73.5-75.0	10	13	16.1		1,500		14	4	8	18	56	28	14	14	A-6a (9)
	SS-18	78.5-80.0	7	9	16.9	106.4	*1,350										
B-2	SS-1	1.0-2.5	13	17	8.6				0	2	82	15	1	NON	N-PLAS	STIC	A-3a (0)
	SS-2	3.5-5.0	17	23	9.8												
	SS-3	6.0-7.5	26	35	10.2												
	SS-4	8.5-10.0	44	59	7.5												
	SS-5	13.5-15.0	65	87	14.7												
	SS-6	18.5-20.0	10	13	21.8	106.7			0	2	23	27	48	31	17	14	A-6a (10)
	SS-7	23.5-25.0	14	19	14.7		9,000										
	SS-8	28.5-30.0	15	20	12.7	114.5	*7,200		6	8	17	29	40	27	14	13	A-6a (8)
	SS-9	33.5-35.0	7	9	17.7		1,500										
	SS-10	38.5-40.0	9	12	14.1		1,000		0	4	35	53	8	23	14	9	A-4b (5)
	SS-11	43.5-45.0	8	11	18.3	105.0											
	SS-12	48.5-50.0	7	9	18.0		2,000										
	SS-13	53.5-55.0	9	12	18.5		2,000		6	5	12	27	50	31	17	14	A-6a (10)

PROJECT: C	OTIC MP 34	4.5 Bridge W	idening, F	ulton Cour	ity, OH		ciates,]	PROJEC	CT NO:	15807	02				
						TABUI	LATION	OF	TES	Γ D Α	ТА						
			ion , N _m	on, N ₆₀			rength			Pa Dis	article S stributio	ize n (%)		A I	Atterber Limits (g %)	
Boring Number	Sample Number	Sample Interval Depth (Feet)	Measured Standard Penetrat (Blows per Foot)	Corrected Standard Penetrati (Blows per Foot)	Natural Moisture Content (% of Dry Weight)	In-Place Dry Density (Pounds per Cubic Foot)	Unconfined Compressive St (Pounds per Square Foot)		Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	ODOT Soil Classification
B-2	SS-14	58.5-60.0	9	12	17.7		2,000										
	SS-15	63.5-65.0	6	8	17.8		2,500										
	SS-16	68.5-70.0	11	15	17.8		2,000										
	SS-17	73.5-75.0	10	13	17.8		2,000										
	SS-18	78.5-80.0	13	17	17.9		2,500										
-																	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B1-12CIP.DVN Project Name: MP 34.5 Bridge Widening Project Client: OTIC Computed By: KCH Project Manager:

Project Date: 10/31/2017

23.00 ft

23.00 ft

23.00 ft

0.00 ft

0.00 ft

0.00 ft

PILE INFORMATION

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

- Drilling: - Driving/Restrike
- Driving/Re

Ultimate Considerations:

- Ultimate: - Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE

Layer 1 2 3 4	Type Cohesive Cohesive Cohesionless Cohesive	Thickness 8.00 ft 9.50 ft 10.50 ft 14.00 ft	Driving Loss 0.00% 0.00% 0.00% 0.00%	Unit Weight 125.00 pcf 125.00 pcf 135.00 pcf 135.00 pcf	Strength 5 0.00 psf 1 0.00 psf 36.4/36.4 2000.00 psf 4050 20 psf	Ultimate Curve T-79 Steel T-79 Steel Nordlund T-79 Steel
5	Cohesive	38.00 ft	0.00%	135.00 pcf	1250.00 psf	T-79 Steel

RESTRIKE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 12" Diameter CIP

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-1 Skin Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 21.39 21.39 21.39 21.39 21.39 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A 1375.12 psf 1480.12 psf 1515.00 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.67 Kips 23.67 Kips 23.77 Kips 49.88 Kips 49.98 Kips 91.83 Kips 116.52 Kips 116.60 Kips 148.34 Kips 180.08 Kips 211.82 Kips 243.56 Kips 250.54 Kips
		RESTRIKE - EN	ND BEARING		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.75 82.75 82.75 82.75 82.75 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 133.55 Kips 133.55 Kips 133.55 Kips 133.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 99.35 Kips 132.88 Kips 132.97 Kips 133.55 Kips 14.14 Kips 14.14 Kips 14.14 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips

×

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.04 Kips 23.67 Kips 23.77 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 99.35 Kips 132.88 Kips 132.97 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 99.38 Kips 156.54 Kips 156.74 Kips
27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 60.01 ft 69.01 ft 78.01 ft 79.99 ft	49.88 Kips 49.98 Kips 91.83 Kips 116.52 Kips 116.60 Kips 148.34 Kips 180.08 Kips 211.82 Kips 243.56 Kips 250.54 Kips	133.55 Kips 14.14 Kips 14.14 Kips 14.14 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips	183.43 Kips 64.12 Kips 105.97 Kips 130.66 Kips 125.44 Kips 157.18 Kips 188.92 Kips 220.65 Kips 252.39 Kips 259.37 Kips

DRIVING - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 12" Diameter CIP

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-1 Skin Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 21.39 21.39 21.39 21.39 21.39 21.39 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1375.12 psf 1480.12 psf 1515.00 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.67 Kips 23.67 Kips 23.77 Kips 49.88 Kips 49.98 Kips 91.83 Kips 116.52 Kips 148.34 Kips 148.34 Kips 180.08 Kips 211.82 Kips 243.56 Kips 250.54 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 60.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.75 82.75 82.75 82.75 82.75 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 133.55 Kips 133.55 Kips 133.55 Kips 133.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 99.35 Kips 132.88 Kips 132.97 Kips 133.55 Kips 14.14 Kips 14.14 Kips 14.14 Kips 14.14 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	0.04 Kips	99.35 Kips	99.38 Kips
22.99 ft	23.67 Kips	132.88 Kips	156.54 Kips
23.01 ft	23.77 Kips	132.97 Kips	156.74 Kips
27.99 ft	49.88 Kips	133.55 Kips	183.43 Kips
28.01 ft	49.98 Kips	14.14 Kips	64.12 Kips
37.01 ft	91.83 Kips	14.14 Kips	105.97 Kips
41.99 ft	116.52 Kips	14.14 Kips	130.66 Kips
42.01 ft	116.60 Kips	8.84 Kips	125.44 Kips
51.01 ft	148.34 Kips	8.84 Kips	157.18 Kips
60.01 ft	180.08 Kips	8.84 Kips	188.92 Kips
69.01 ft	211.82 Kips	8.84 Kips	220.65 Kips
78.01 ft	243.56 Kips	8.84 Kips	252.39 Kips
79.99 ft	250.54 Kips	8.84 Kips	259.37 Kips

ULTIMATE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 12" Diameter CIP

				Boring B-1
oil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
ohesive ohesive ohesive ohesive ohesionless ohesionless ohesionless ohesionless ohesionless ohesionless ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 21.39 21.39 21.39 21.39 21.39 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1375.12 psf 1480.12 psf 1515.00 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.67 Kips 23.67 Kips 23.77 Kips 49.88 Kips 49.98 Kips 91.83 Kips 116.52 Kips 116.60 Kips 148.34 Kips 180.08 Kips 211.82 Kips 243.56 Kips 250.54 Kips
<u>U</u>	LTIMATE - END	BEARING		
oil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
ohesive ohesive ohesive ohesive ohesionless ohesionless ohesionless ohesionless ohesionless ohesionless ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive ohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.75 82.75 82.75 82.75 82.75 82.75 82.75 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 133.55 Kips 133.55 Kips 133.55 Kips 133.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 99.35 Kips 132.88 Kips 132.97 Kips 133.55 Kips 14.14 Kips 14.14 Kips 14.14 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips
	bil Type	bil TypeEffective Stress At MidpointbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/Abhesionless2188.18 psfbhesionless2558.07 psfbhesionless2930.36 psfbhesiveN/Abhesionless2188.85 psfbhesionless2930.73 psfbhesionless2928.65 psfbhesionless2928.27 psfbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/AbhesiveN/A	Jil TypeEffective Stress At MidpointSliding Friction AngleohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/AohesiveN/AN/Aohesionless2188.18 psf21.39ohesionless2930.36 psf21.39ohesionless3111.14 psf21.39ohesiveN/AN/AohesiveN/A	II TypeEffective Stress At MidpointSliding Friction AngleAdhesionchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesiveN/AN/A0.00 psfchesionless2188.18 psf21.39N/Achesionless2558.07 psf21.39N/Achesionless2558.07 psf21.39N/Achesionless3111.14 psf21.39N/AchesiveN/AN/A1375.12 psfchesiveN/AN/A1480.12 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/A1122.50 psfchesiveN/AN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/AN/AchesiveN/A <td< td=""></td<>

ULTIMATE - SUMMARY OF CAPACITIES

Depth	GSE = Fun, 806Skin Friction	End Bearing	Total Capacity	Boring B
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips	
8 01 ft				
17 01 ft	0.00 Kips	0.00 Kips		
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips	
17.51 ft	0.04 Kips	99.35 Kips	99.38 Kips	
22.99 ft	23.67 Kips	132.88 Kips	156.54 Kips	
23.01 ft	23.77 Kips	132.97 Kips	156.74 Kips	
27.99 ft	49.88 Kips	133.55 Kips	183.43 Kips	•
28.01 ft	49.98 Kips	14.14 Kips	64.12 Kips @ 3	5,72 57
37.01 ft	91.83 Kips	14.14 Kips	105.97 Kips	W, 770*
41.99 ft	116.52 Kips	14.14 Kips	130.66 Kips	
42.01 ft	116.60 Kips	8.84 Kips	125.44 Kips R @ 49	5.97 fr
51.01 ft	148.34 Kips	8.84 Kips	157.18 Kips	w. 757±
60.01 ft	180.08 Kips	8.84 Kips	188.92 Kips	3155
69.01 ft	211.82 Kips	8.84 Kips	220.65 Kips	יייביויר
78.01 ft	243.56 Kips	8.84 Kips	252.39 Kips	W. HOL
79.99 ft	250.54 Kips	8.84 Kips	259.37 Kips	

Location	Boring Number	Temporary Assumed Bottom of Pile Cap Elevation (feet)	Bridge Stru Assumed Cut-Off Pile Elevation (feet)	cture Abutm R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
West (Rear) Abutment	B-1	805	807	330	231	>Bothz	oring

	Existing Bridge Structure Abutments - ASD							ev. of capacit
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ultimate Bearing Value (kips) or Body fo	Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD TFL (Kips)
West	P 1	805	807	A, 200 B. 150 C. 100	100 75 50	65 50 40	70 55 45	140 105 70
(Kear) Abutment	B-1	798	800	A, 200 B, 150 C. 100	100 75 50	60 45 30	65 50 35	140 105 70

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft 10.7 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft 21.3 ft	Sand: Unit Weight 135 Friction Angles 36/36 Driving Loss 0%
26.7 ft 32.0 ft 37.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
42.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
$\frac{48.0 \pi}{53.3 \text{ ft}}$	
58.7 ft	
$\overline{69.3}$ ft	
74.7 ft	
80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

23.00 ft

23.00 ft

23.00 ft

0.00 ft

0.00 ft

0.00 ft

Filename: T:\GEOTECH\PROJEC~4\B1-14CIP.DVN Project Name: MP 34.5 Bridge Widening Project Client: OTIC Computed By: KCH Project Manager: PILE INFORMATION Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Neglect contribution from fill Diameter of Pile: 14.00 in ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

- Drilling:
 Driving/Restrike
- Ultimate:

Ultimate Considerations:

- Ultimate: - Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE

Layer 1	Type Cohesive	Thickness 8.00 ft	Driving Loss 0.00%	Unit Weight 125.00 pcf	Strength \$0.00 psf	Ultimate Curve T-79 Steel
2	Cohesive	9.50 ft	0.00%	125.00 pcf	<0.00 psf	T-79 Steel
3	Cohesionless	10.50 ft	0.00%	135.00 pcf	36.4/36.4	Nordlund
4	Cohesive	14.00 ft	0.00%	135.00 pcf	2000.00 psf	T-79 Steel
5	Cohesive	38.00 ft	0.00%	135.00 pcf	1250.00 psf	T-79 Steel

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-1 Skin Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 23.01 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 24.25 24.25 24.25 24.25 24.25 24.25 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1328.43 psf 1418.43 psf 1468.23 psf 1468.23 psf 1468.23 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 35.64 Kips 35.79 Kips 75.11 Kips 75.25 Kips 122.04 Kips 150.48 Kips 150.58 Kips 187.61 Kips 224.64 Kips 261.66 Kips 298.69 Kips 306.84 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 181.87 Kips 181.87 Kips 181.87 Kips 181.87 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 135.26 Kips 135.26 Kips 180.97 Kips 181.10 Kips 181.87 Kips 19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips
17.51 ft 22.99 ft 23.01 ft 27.99 ft	0.06 Kips 35.64 Kips 35.79 Kips 75.11 Kips 75.25 Kips	135.26 Kips 180.97 Kips 181.10 Kips 181.87 Kips	135.31 Kips 216.61 Kips 216.89 Kips 256.98 Kips
28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 60.01 ft 69.01 ft	75.25 Kips 122.04 Kips 150.48 Kips 150.58 Kips 187.61 Kips 224.64 Kips 261.66 Kips	19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips	141.28 Kips 141.28 Kips 169.72 Kips 162.61 Kips 199.64 Kips 236.66 Kips 273.69 Kips
78.01 ft 79.99 ft	298.69 Kips 306.84 Kips	12.03 Kips 12.03 Kips	310.72 Kips 318.86 Kips

DRIVING - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 14" Diameter CIP

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin ^{Boring B-1} Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 24.25 24.25 24.25 24.25 24.25 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1328.43 psf 1418.43 psf 1468.23 psf 1468.23 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 35.64 Kips 35.79 Kips 75.11 Kips 75.25 Kips 122.04 Kips 150.48 Kips 150.58 Kips 187.61 Kips 224.64 Kips 298.69 Kips 306.84 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 181.87 Kips 181.87 Kips 181.87 Kips 181.87 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 135.26 Kips 180.97 Kips 181.10 Kips 181.87 Kips 19.24 Kips 19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips

DRIVING - SUMMARY OF CAPACITIES

Skin Friction	End Bearing	Total Capacity
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.06 Kips	135.26 Kips	135.31 Kips
35.64 Kips	180.97 Kips	216.61 Kips
35.79 Kips	181.10 Kips	216.89 Kips
75.11 Kips	181.87 Kips	256.98 Kips
75.25 Kips	19.24 Kips	94.49 Kips
122.04 Kips	19.24 Kips	141.28 Kips
150.48 Kips	19.24 Kips	169.72 Kips
150.58 Kips	12.03 Kips	162.61 Kips
187.61 Kips	12.03 Kips	199.64 Kips
224.64 Kips	12.03 Kips	236.66 Kips
261.66 Kips	12.03 Kips	273.69 Kips
298.69 Kips	12.03 Kips	310.72 Kips
306.84 Kips	12.03 Kips	318.86 Kips
	Skin Friction 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.06 Kips 35.64 Kips 35.79 Kips 75.11 Kips 75.25 Kips 122.04 Kips 150.48 Kips 150.58 Kips 187.61 Kips 224.64 Kips 298.69 Kips 306.84 Kips	Skin FrictionEnd Bearing0.00 Kips0.00 Kips135.26 Kips35.64 Kips180.97 Kips35.79 Kips181.10 Kips75.11 Kips181.87 Kips75.25 Kips19.24 Kips122.04 Kips19.24 Kips150.58 Kips12.03 Kips150.58 Kips12.03 Kips224.64 Kips12.03 Kips261.66 Kips12.03 Kips298.69 Kips12.03 Kips306.84 Kips12.03 Kips

ULTIMATE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 14" Diameter CIP

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin ^{Boring B-1} Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 24.25 24.25 24.25 24.25 24.25 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1328.43 psf 1418.43 psf 1468.23 psf 1468.23 psf 1468.23 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 35.64 Kips 35.79 Kips 75.11 Kips 75.25 Kips 122.04 Kips 150.48 Kips 150.58 Kips 187.61 Kips 261.66 Kips 298.69 Kips 306.84 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 181.87 Kips 181.87 Kips 181.87 Kips 181.87 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 135.26 Kips 180.97 Kips 181.10 Kips 181.87 Kips 19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth GSE= Elev. 806	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	0.06 Kips	135.26 Kips	135.31 Kips
22.99 ft	35.64 Kips	180.97 Kips	216.61 Kips
23.01 ft	35.79 Kips	181.10 Kips	216.89 Kips
27.99 ft	75.11 Kips	181.87 Kips	256.98 Kips
28.01 ft	75.25 Kips	19.24 Kips	94.49 Kips ~ E @ 29.07 57 (E 60 112)
37.01 ft	122.04 Kips	19.24 Kips	141.28 Kips DQ 38,53 ft (Elev 761-)
41.99 ft	150.48 Kips	19.24 Kips	169.72 Kipš
42.01 ft	150.58 Kips	12.03 Kips	162.61 Kips
51.01 ft	187.61 Kips	12.03 Kips	199.64 Kips 51.10 h (Elev. 7552)
60.01 ft	224.64 Kips	12.03 Kips	236.66 Kips 60 63,25 fr (Elw. 143=)
69.01 ft	261.66 Kips	12.03 Kips	273.69 Kips _ AQ, 70, 54 & (FW. 735±)
78.01 ft	298.69 Kips	12.03 Kips	310.72 Kips
79.99 ft	306.84 Kips	12.03 Kips	318.86 Kips

Temporary Bridge Structure Abutments - LRFD							
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
West (Rear) Abutment	B-1	805	807	390	273	>Botton Bor;	~ 0f

Existing Bridge Structure Abutments - ASD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ast Ultimate Bearing Value (kips)	ASD Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD TFL (Kip6)
	B-1	805	807	A. 280	140	75	90	196
				6,250	125	65	70	175
West (Rear) Abutment				C. 200	100	55	60	140
				D. 150	75	40	45	105
				E. 100	50	30	35	70
		798	800	A, 280	140	65	70	196
				B. 250	125	60	65	175
				C. 200	100	45	50	140
				D. 150	75	35	40	105
				E 100	50	25	30	70

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft	Sand: Unit Weight 135 Friction Angles 36/36 Driving Loss 0%
21.3 ft	
26.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
32.0 ft	
37.3 ft	
42.7 ft	Clay: Unit weight 135 Undrained Shear Strength 1250 Driving Loss 0%
48.0 ft	
53.3 ft	
58.7 π	
64.0π	
74 7 #	
80.0 ft	
00.0 IC	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B1-16CIP.DVN Project Name: MP 34.5 Bridge Widening Project Date: 10/31/2017 **Project Client: OTIC** Computed By: KCH Project Manager: **PILE INFORMATION** Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Neglect Contribution from fill -Diameter of Pile: 16.00 in ULTIMATE CONSIDERATIONS Water Table Depth At Time Of: - Drilling: 23.00 ft - Driving/Restrike 23.00 ft - Ultimate: 23.00 ft 0.00 ft Ultimate Considerations: - Local Scour: - Long Term Scour: 0.00 ft 0.00 ft - Soft Soil: **ULTIMATE PROFILE** Thickness **Driving Loss** Unit Weight Strength **Ultimate Curve** Layer Type 0.00% 125.00 pcf 50.00 psf T-79 Steel Cohesive 8.00 ft 1 0.00% 125.00 pcf 0.00 psf T-79 Steel Cohesive 9.50 ft 2 135.00 pcf 36.4/36.4 Nordlund 3 Cohesionless 10.50 ft 0.00% 2000.00 psf T-79 Steel 135.00 pcf 0.00% 4 Cohesive 14.00 ft T-79 Steel 38.00 ft 0.00% 135.00 pcf 1250.00 psf 5 Cohesive

RESTRIKE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 16" Diameter CIP

140

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin ^{Boring B-1} Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.64 26.64 26.64 26.64 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1293.42 psf 1372.17 psf 1415.75 psf 1068.01 psf 1111.32 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 49.64 Kips 49.64 Kips 104.61 Kips 104.61 Kips 156.51 Kips 187.69 Kips 287.69 Kips 229.70 Kips 272.44 Kips 314.75 Kips 357.07 Kips 366.38 Kips
79.99 ft	Concave	RESTRIKE - EN	D BEARING		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 237.55 Kips 237.55 Kips 237.55 Kips 237.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 176.66 Kips 236.37 Kips 236.54 Kips 237.55 Kips 25.13 Kips 25.13 Kips 25.13 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips
1.14

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	0.08 Kips	176.66 Kips	176.74 Kips
22.99 ft	49.64 Kips	236.37 Kips	286.01 Kips
23.01 ft	49.84 Kips	236.54 Kips	286.39 Kips
27.99 ft	104.61 Kips	237.55 Kips	342.16 Kips
28.01 ft	104.78 Kips	25.13 Kips	129.91 Kips
37.01 ft	156.51 Kips	25.13 Kips	181.65 Kips
41.99 ft	187.69 Kips	25.13 Kips	212.82 Kips
42.01 ft	187.80 Kips	15.71 Kips	203.51 Kips
51.01 ft	229.70 Kips	15.71 Kips	245.41 Kips
60.01 ft	272.44 Kips	15.71 Kips	288.14 Kips
69.01 ft	314.75 Kips	15.71 Kips	330.46 Kips
78.01 ft	357.07 Kips	15.71 Kips	372.78 Kips
79.99 ft	366.38 Kips	15.71 Kips	382.09 Kips

DRIVING - SKIN FRICTION

		_
16"	Diameter	CIP
10	Diameter	UII.

				D : D :
Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.64 26.64 26.64 26.64 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1293.42 psf 1372.17 psf 1415.75 psf 1068.01 psf 1111.32 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.08 Kips 49.64 Kips 104.61 Kips 104.61 Kips 156.51 Kips 187.69 Kips 187.80 Kips 229.70 Kips 272.44 Kips 314.75 Kips 357.07 Kips 366.38 Kips
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 237.55 Kips 237.55 Kips 237.55 Kips 237.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 176.66 Kips 236.37 Kips 236.54 Kips 237.55 Kips 25.13 Kips 25.13 Kips 25.13 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips
	Soil Type Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive	Soil TypeEffective Stress At MidpointCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesionless2188.18 psfCohesionless2558.07 psfCohesionless2930.36 psfCohesionless3111.14 psfCohesiveN/ACohesionless2928.65 psfCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACo	Soil TypeEffective Stress At MidpointSliding Friction AngleCohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesionless2188.18 psf26.64Cohesionless2930.36 psf26.64Cohesionless2930.36 psf26.64Cohesionless3111.14 psf26.64CohesiveN/AN/ACohesiveN/A<	Soil TypeEffective Stress At MidpointSliding Friction AngleAdhesionCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesionless2188.18 psf26.64N/ACohesionless2558.07 psf26.64N/ACohesionless2930.36 psf26.64N/ACohesionless3111.14 psf26.64N/ACohesionless3111.14 psf26.64N/ACohesiveN/AN/A1293.42 psfCohesiveN/AN/A1372.17 psfCohesiveN/AN/A1111.32 psfCohesiveN/AN/A1111.32 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohes

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	0.08 Kips	176.66 Kips	176.74 Kips
22.99 ft	49.64 Kips	236.37 Kips	286.01 Kips
23.01 ft	49.84 Kips	236.54 Kips	286.39 Kips
27.99 ft	104.61 Kips	237.55 Kips	342.16 Kips
28.01 ft	104.78 Kips	25.13 Kips	129.91 Kips
37.01 ft	156.51 Kips	25.13 Kips	181.65 Kips
41.99 ft	187.69 Kips	25.13 Kips	212.82 Kips
42.01 ft	187.80 Kips	15.71 Kips	203.51 Kips
51.01 ft	229.70 Kips	15.71 Kips	245.41 Kips
60.01 ft	272.44 Kips	15.71 Kips	288.14 Kips
69.01 ft	314.75 Kips	15.71 Kips	330.46 Kips
78.01 ft	357.07 Kips	15.71 Kips	372.78 Kips
79.99 ft	366.38 Kips	15.71 Kips	382.09 Kips

ULTIMATE - SKIN FRICTION

1. .

OTIC MP 34.5

4.5	Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction	
	0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 60.01 ft 69.01 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.64 26.64 26.64 26.64 N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1293.42 psf 1372.17 psf 1415.75 psf 1068.01 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.08 Kips 49.64 Kips 49.84 Kips 104.61 Kips 104.61 Kips 156.51 Kips 187.69 Kips 187.80 Kips 229.70 Kips 272.44 Kips 314.75 Kips 357.07 Kips	5
	79.99 ft	Cohesive		N/A ND BEARING	1122.50 pst	366.38 Kips	
	Depth	Soil Type Cohesive	Effective Stress At Tip N/A	Bearing Cap. Factor N/A	Limiting End Bearing N/A	End Bearing 0.00 Kips	
	7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 237.55 Kips 237.55 Kips 237.55 Kips 237.55 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 176.66 Kips 236.37 Kips 236.54 Kips 237.55 Kips 25.13 Kips 25.13 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips	

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft GSE = E4w, 806	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft	0.08 Kips 49.64 Kips 49.84 Kips 104.61 Kips 104.78 Kips 156.51 Kips 187.69 Kips 187.80 Kips 229.70 Kips	176.66 Kips 236.37 Kips 236.54 Kips 237.55 Kips 25.13 Kips 25.13 Kips 25.13 Kips 15.71 Kips 15.71 Kips	176.74 Kips 286.01 Kips 286.39 Kips 342.16 Kips 129.91 Kips 129.91 Kips 212.82 Kips 212.82 Kips 203.51 Kips 245.41 Kips 2651.984 (Elw. 754 [±])
60.01 ft	272.44 Kips	15.71 Kips	288.14 Kips 6@62,53 fr (Fun, 7432)
69.01 ft	314.75 Kips	15.71 Kips	330.46 Kips 6@62,53 fr (Fun, 7432)
78.01 ft	357.07 Kips	15.71 Kips	372.78 Kips
79.99 ft	366.38 Kips	15.71 Kips	382.09 Kips

Temporary Bridge Structure Abutments - LRFD							
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
West (Rear) Abutment	B-1	805	807	450	315	760tto Borin	n of g

Existing Bridge Structure Abutments - ASD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	ASD Ultimate Bearing Value (kips) ochode LRED	A5D Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD
	P 1	805	807	A. 360	180	30	85	252
				B, 300	150	65	סר	210
				C. 250	175	55	60	175
West				D. 200	100	45	50	140
(Pear)				E. 150	75	35	40	105
	D-I	798		A , 360	180	70	75	252
Abutiment				B. 300	150	60	65	210
			800	<u>C. 250</u>	125	45	50	175
				D. 200	100	40	45	140
				E. 150	75	25	30	105

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft 10.7 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft 21.3 ft	Sand: Unit Weight 135 Friction Angles 36/36 Driving Loss 0%
26.7 ft 32.0 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
37.3 ft 42.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
48.0 ft 53.3 ft	
58.7 ft	
64.0 ft	
69.3 ft 74.7 ft	
80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B1NOFILL.DVN Project Date: 10/31/2017 Project Name: MP 34.5 Bridge Widening **Project Client: OTIC** Computed By: KCH Project Manager: **PILE INFORMATION** Pile Type: H Pile - HP10X42 Top of Pile: 0.00 ft Neglect Contribution From All Perimeter Analysis: Box Tip Analysis: Box Area **ULTIMATE CONSIDERATIONS** 23.00 ft Water Table Depth At Time Of: - Drilling: 23.00 ft - Driving/Restrike 23.00 ft - Ultimate: 0.00 ft - Local Scour: **Ultimate Considerations:** 0.00 ft - Long Term Scour: 0.00 ft - Soft Soil: **ULTIMATE PROFILE** Strength **Driving Loss** Unit Weight Thickness Туре Layer 0.00% 125.00 pcf 8.00 ft Cohesive 1 0.00% 125.00 pcf 9.50 ft Cohesive 2 36.4/36.4 0.00% 135.00 pcf 10.50 ft 3 Cohesionless 2000.00 psf 135.00 pcf 0.00% 14.00 ft Cohesive 4 1250.00 psf 135.00 pcf 0.00% 38.00 ft 5 Cohesive

Ultimate Curve T-79 Steel T-79 Steel Nordlund T-79 Steel T-79 Steel

RESTRIKE - SKIN FRICTION

				Boring B-1
Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.67 26.67 26.67 26.67 26.67 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1437.55 psf 1515.00 psf 1515.00 psf 152.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.04 Kips 23.04 Kips 23.14 Kips 48.56 Kips 93.60 Kips 118.47 Kips 118.56 Kips 151.85 Kips 185.15 Kips 251.74 Kips 259.07 Kips
	RESTRIKE - EN	<u>D BEARING</u>		
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 115.46 Kips 115.46 Kips 115.46 Kips 115.46 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 85.86 Kips 114.80 Kips 114.88 Kips 115.46 Kips 12.22 Kips 12.22 Kips 12.22 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips
	Soil Type Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive	Soil TypeEffective Stress At MidpointCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesionless2188.18 psfCohesionless2558.07 psfCohesionless2930.36 psfCohesionless2930.36 psfCohesionless3111.14 psfCohesiveN/ACohesionless2930.73 psfCohesionless2930.73 psfCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesive <td< td=""><td>Soil TypeEffective Stress At MidpointSliding Friction AngleCohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesionless2188.18 psf26.67Cohesionless2558.07 psf26.67Cohesionless2930.36 psf26.67Cohesionless3111.14 psf26.67CohesiveN/AN/ACohesiveN/A<</td><td>Soil TypeEffective Stress At MidpointSliding Friction AngleAdhesionCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesionless2188.18 psf26.67N/ACohesionless2930.36 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesiveN/AN/A1437.55 psfCohesiveN/AN/A1437.55 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesive<</td></td<>	Soil TypeEffective Stress At MidpointSliding Friction AngleCohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesionless2188.18 psf26.67Cohesionless2558.07 psf26.67Cohesionless2930.36 psf26.67Cohesionless3111.14 psf26.67CohesiveN/AN/ACohesiveN/A<	Soil TypeEffective Stress At MidpointSliding Friction AngleAdhesionCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesionless2188.18 psf26.67N/ACohesionless2930.36 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesiveN/AN/A1437.55 psfCohesiveN/AN/A1437.55 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesive<

.

1

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
Depth 0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft	Skin Friction 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.04 Kips 23.04 Kips 23.14 Kips 48.56 Kips 93.60 Kips 118.47 Kips 118.56 Kips 151.85 Kips 185.15 Kips 251.74 Kips	End Bearing 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 85.86 Kips 114.80 Kips 114.80 Kips 115.46 Kips 12.22 Kips 12.22 Kips 12.22 Kips 7.64 Kips 7.65 Kips 7.65 Kips 7.65 Kips 7.65 Kips 7.65 Kips 7.65 Kips 7.65 Kips 7.65 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 85.90 Kips 137.84 Kips 138.02 Kips 164.03 Kips 164.03 Kips 105.82 Kips 130.69 Kips 126.19 Kips 159.49 Kips 192.79 Kips 226.08 Kips 259.38 Kips
79.99 ft	259.07 Kips	7.64 Kips	266.70 Kips

•

.

.

DRIVING - SKIN FRICTION

•

Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.67 26.67 26.67 26.67 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A 1437.55 psf 1515.00 psf 1515.00 psf 152.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 23.04 Kips 23.04 Kips 23.14 Kips 48.56 Kips 93.60 Kips 118.47 Kips 118.56 Kips 151.85 Kips 251.74 Kips 251.74 Kips 259.07 Kips
	<u>DRIVING - END</u>	BEARING		
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 115.46 Kips 115.46 Kips 115.46 Kips 115.46 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 85.86 Kips 114.80 Kips 114.88 Kips 115.46 Kips 12.22 Kips 12.22 Kips 12.22 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips
	Soil Type Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	Soil TypeEffective Stress At MidpointCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesionless2188.18 psfCohesionless2930.36 psfCohesionless2930.36 psfCohesionless2930.36 psfCohesionless3111.14 psfCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesionless2930.73 psfCohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/ACohesiveN/A <td>Soil TypeEffective Stress At MidpointSliding Friction AngleCohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesionless2188.18 psf26.67Cohesionless2558.07 psf26.67Cohesionless2930.36 psf26.67Cohesionless3111.14 psf26.67CohesiveN/AN/ACohesiveN/A<</td> <td>Soil TypeEffective Stress At MidpointSliding Friction AngleAdhesionCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesionless2188.18 psf26.67N/ACohesionless2558.07 psf26.67N/ACohesionless2930.36 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesiveN/AN/A1437.55 psfCohesiveN/AN/A1437.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/A<!--</td--></td>	Soil TypeEffective Stress At MidpointSliding Friction AngleCohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesiveN/AN/ACohesionless2188.18 psf26.67Cohesionless2558.07 psf26.67Cohesionless2930.36 psf26.67Cohesionless3111.14 psf26.67CohesiveN/AN/ACohesiveN/A<	Soil TypeEffective Stress At MidpointSliding Friction AngleAdhesionCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesiveN/AN/A0.00 psfCohesionless2188.18 psf26.67N/ACohesionless2558.07 psf26.67N/ACohesionless2930.36 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesionless3111.14 psf26.67N/ACohesiveN/AN/A1437.55 psfCohesiveN/AN/A1437.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/A1122.50 psfCohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/ACohesiveN/AN/AN/A </td

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	23.04 Kips	85.86 Kips	85.90 Kips
22.99 ft	23.04 Kips	114.80 Kips	137.84 Kips
23.01 ft	23.14 Kips	114.88 Kips	138.02 Kips
27.99 ft	48.56 Kips	115.46 Kips	164.03 Kips
28.01 ft	48.66 Kips	12.22 Kips	60.88 Kips
37.01 ft	93.60 Kips	12.22 Kips	105.82 Kips
41.99 ft	118.47 Kips	12.22 Kips	130.69 Kips
42.01 ft	118.56 Kips	7.64 Kips	126.19 Kips
51.01 ft	151.85 Kips	7.64 Kips	159.49 Kips
60.01 ft	185.15 Kips	7.64 Kips	192.79 Kips
69.01 ft	218.45 Kips	7.64 Kips	226.08 Kips
78.01 ft	251.74 Kips	7.64 Kips	259.38 Kips
79.99 ft	259.07 Kips	7.64 Kips	266.70 Kips

ULTIMATE - SKIN FRICTION

	-				11110342
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin ^{Boring B-1} Friction
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.18 psf 2558.07 psf 2930.36 psf 3111.14 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 26.67 26.67 26.67 26.67 26.67 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1437.55 psf 1515.00 psf 1515.00 psf 1515.00 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.04 Kips 23.04 Kips 23.04 Kips 23.14 Kips 48.56 Kips 93.60 Kips 118.47 Kips 118.56 Kips 151.85 Kips 185.15 Kips 251.74 Kips 259.07 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 17.01 ft 17.49 ft 17.51 ft 22.99 ft 23.01 ft 27.99 ft 28.01 ft 37.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 78.01 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A 2188.85 psf 2928.65 psf 2930.73 psf 3292.27 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 82.77 82.77 82.77 82.77 82.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 115.46 Kips 115.46 Kips 115.46 Kips 115.46 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 85.86 Kips 114.80 Kips 114.88 Kips 115.46 Kips 12.22 Kips 12.22 Kips 12.22 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips 7.64 Kips

135

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft GDE-EW. 000	0.00 Kips	0.00 Kips	0.00 Kips
7.99 π			
δ.01 π			
17.01 π	0.00 Kips		
17.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.51 ft	0.04 Kips	85.86 Kips	85.90 Kips
22.99 ft	23.04 Kips	114.80 Kips	137.84 Kips
23.01 ft	23.14 Kips	114.88 Kips	138.02 Kips
27.99 ft	48.56 Kips	115.46 Kips	164.03 Kips
28.01 ft	48.66 Kips	12.22 Kips	60.88 Kips - DG 35,84 fr (Even, 770t)
37.01 ft	93.60 Kips	12.22 Kips	105.82 Kips
41.99 ft	118.47 Kips	12.22 Kips	130.69 Kips
42.01 ft	118.56 Kips	7.64 Kips	126.19 Kips (Ever, 756t)
51.01 ft	151.85 Kips	7.64 Kips	159.49 Kips
60.01 ft	185.15 Kips	7.64 Kips	192.79 Kips 3@61,95ft (Elev. 744±)
69.01 ft	218.45 Kips	7.64 Kips	226.08 Kips 75 410 fr (Flew, 7302)
78.01 ft	251.74 Kips	7.64 Kips	259.38 Kips
79.99 ft	259.07 Kips	7.64 Kips	266.70 Kips

Temporary Bridge Structure Abutments - LRFD							
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
West (Rear) Abutment	B-1	805	807	350	245	>Bottor Borin	r of

Existing Bridge Structure Abutments - ASD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	ASD Ultimate Bearing Value (kips) Rady LRT=D	A5D Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD TFL (Kips)
		805	807	300	150	>B.O.B.		
				A. 250	125	80	85	175
West				B.200	100	65	70	140
				0,150	75	50	55	105
(Rear)	R1			D. 100	50	HO	45	70
Abutment	D-1			300	150	7.B.O.B.		
				A.250	125	70	75	175
		798	800	B. 200	100	55	60	140
				C 150	75	45	50	105
				P. 100	50	30	35	70

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft	Sand: Unit Weight 135 Friction Angles 36/36 Driving Loss 0%
21.3 ft	
32.0 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
37.3 ft	
42.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
48.0 π 53.3 ft	
58.7 ft	
64.0 ft	
69.3 ft 74.7 ft	
80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B2-12CIP.DVN Project Name: MP 34.5 Bridge Widening Project Client: OTIC Computed By: KCH Project Manager:

5

Cohesive

Project Date: 10/31/2017

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Neglect contribution from fill Diameter of Pile: 12.00 in

46.50 ft

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: - Drilling: 23.00 ft - Driving/Restrike 23.00 ft - Ultimate: 23.00 ft - Local Scour: 0.00 ft Ultimate Considerations: - Long Term Scour: 0.00 ft 0.00 ft - Soft Soil: **ULTIMATE PROFILE** Thickness **Driving Loss** Unit Weight Strength Layer Туре 5 0.00 psf ℃0.00 psf Cohesive 0.00% 125.00 pcf 6.00 ft 1 125.00 pcf 2 Cohesive 13.00 ft 0.00% 135.00 pcf 1075.00 psf 3 Cohesive 4.00 ft 0.00% 135.00 pcf 2000.00 psf Cohesive 0.00% 4 10.50 ft

0.00%

135.00 pcf

Ultimate Curve T-79 Steel T-79 Steel T-79 Steel T-79 Steel T-79 Steel

1250.00 psf

RESTRIKE - SKIN FRICTION

					Boring B-2
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	887.88 psf	0.03 Kips
22.99 ft	Cohesive	N/A	N/A	909.47 psf	11.40 Kips
23.01 ft	Cohesive	N/A	N/A	1316.78 psf	11.47 Kips
32.01 ft	Cohesive	N/A	N/A	1421.78 psf	51.67 Kips
33.49 ft	Cohesive	N/A	N/A	1439.05 psf	58.85 Kips
33.51 ft	Cohesive	N/A	N/A	1080.86 psf	58.94 Kips
42.51 ft	Cohesive	N/A	N/A	1122.50 psf	90.68 Kips
51.51 ft	Cohesive	N/A	N/A	1122.50 psf	122.41 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	154.15 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	185.89 Kips
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	217.63 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	222.85 Kips
		<u>RESTRIKE - EN</u>	ID BEARING		
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		ALTIP	Factor	Bearing	bearing
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	7.60 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	7.60 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	8.84 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	7.60 Kips	7.63 Kips
22.99 ft	11.40 Kips	7.60 Kips	19.00 Kips
23.01 ft	11.47 Kips	14.14 Kips	25.61 Kips
32.01 ft	51.67 Kips	14.14 Kips	65.81 Kips
33.49 ft	58.85 Kips	14.14 Kips	72.99 Kips
33.51 ft	58.94 Kips	8.84 Kips	67.77 Kips
42.51 ft	90.68 Kips	8.84 Kips	99.51 Kips
51.51 ft	122.41 Kips	8.84 Kips	131.25 Kips
60.51 ft	154.15 Kips	8.84 Kips	162.99 Kips
69.51 ft	185.89 Kips	8.84 Kips	194.73 Kips
78.51 ft	217.63 Kips	8.84 Kips	226.46 Kips
79.99 ft	222.85 Kips	8.84 Kips	231.68 Kips
	•		

DRIVING - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 12" Diameter CIP

şе.

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-2 Skin Friction
0.01 ft 5.99 ft 6.01 ft 15.01 ft 19.01 ft 22.99 ft 23.01 ft 32.01 ft 33.49 ft 33.51 ft 42.51 ft 51.51 ft 60.51 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 887.88 psf 909.47 psf 1316.78 psf 1421.78 psf 1439.05 psf 1080.86 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.03 Kips 11.40 Kips 11.47 Kips 51.67 Kips 58.85 Kips 58.94 Kips 90.68 Kips 122.41 Kips 154.15 Kips 185.89 Kips
78.51 ft 79.99 ft	Cohesive Cohesive	N/A N/A DRIVING - ENI	N/A N/A D BEARING	1122.50 psf 1122.50 psf 1122.50 psf	217.63 Kips 222.85 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 5.99 ft 6.01 ft 15.01 ft 18.99 ft 19.01 ft 22.99 ft 23.01 ft 32.01 ft 33.49 ft 33.51 ft 42.51 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 7.60 Kips 7.60 Kips 14.14 Kips 14.14 Kips 14.14 Kips 8.84 Kips 8.84 Kips
51.51 ft 60.51 ft 69.51 ft 78.51 ft 79.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips 8.84 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	7.60 Kips	7.63 Kips
22.99 ft	11.40 Kips	7.60 Kips	19.00 Kips
23.01 ft	11.47 Kips	14.14 Kips	25.61 Kips
32.01 ft	51.67 Kips	14.14 Kips	65.81 Kips
33.49 ft	58.85 Kips	14.14 Kips	72.99 Kips
33.51 ft	58.94 Kips	8.84 Kips	67.77 Kips
42.51 ft	90.68 Kips	8.84 Kips	99.51 Kips
51.51 ft	122.41 Kips	8.84 Kips	131.25 Kips
60.51 ft	154.15 Kips	8.84 Kips	162.99 Kips
69.51 ft	185.89 Kips	8.84 Kips	194.73 Kips
78.51 ft	217.63 Kips	8.84 Kips	226.46 Kips
79.99 ft	222.85 Kips	8.84 Kips	231.68 Kips
	•		

ULTIMATE - SKIN FRICTION

					Boring B-2
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	NI/A	0.00 nsf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.00 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15 01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18 99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.00 ft	Cohesive	N/A	N/A	887 88 nsf	0.03 Kips
22 99 ft	Cohesive	N/A	N/A	909 47 psf	11 40 Kips
23 01 ft	Cohesive	N/A	N/A	1316.78 psf	11.47 Kips
32 01 ft	Cohesive	N/A	N/A	1421.78 psf	51.67 Kips
33 49 ft	Cohesive	N/A	N/A	1439.05 psf	58.85 Kips
33 51 ft	Cohesive	N/A	N/A	1080.86 psf	58.94 Kips
42.51 ft	Cohesive	N/A	N/A	1122.50 psf	90.68 Kips
51.51 ft	Cohesive	N/A	N/A	1122.50 psf	122.41 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	154.15 Kips
69 51 ft	Cohesive	N/A	N/A	1122.50 psf	185.89 Kips
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	217.63 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	222.85 Kips
	001100110	ULTIMATE - EN	ID BEARING	<u></u> þ	
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At Tip	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	7.60 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	7.60 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	14.14 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	8.84 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	8.84 Kips

5

ULTIMATE - SUMMARY OF CAPACITIES

Depth GSE= Elev. 808	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	7.60 Kips	7.63 Kips
22.99 ft	11.40 Kips	7.60 Kips	19.00 Kips
23.01 ft	11.47 Kips	14.14 Kips	25.61 Kips
32.01 ft	51.67 Kips	14.14 Kips	65.81 Kips
33.49 ft	58.85 Kips	14.14 Kips	72.99 Kips
33.51 ft	58.94 Kips	8.84 Kips	67.77 Kips
42.51 ft	90.68 Kips	8.84 Kips	99.51 Kips (EW, 765±)
51.51 ft	122.41 Kips	8.84 Kips	131.25 Kips
60.51 ft	154.15 Kips	8.84 Kips	162.99 Kips 000,0377 (Flev, 7512)
69.51 ft	185.89 Kips	8.84 Kips	194.73 Kips
78.51 ft	217.63 Kips	8.84 Kips	226.46 Kips AG71.00 + (Elw. 7375)
79.99 ft	222.85 Kips	8.84 Kips	231.68 Kips

Temporary Bridge Structure Abutments - LRFD							
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
East (Forward) Abutment	B-2	803	805	330	231	7Both Bo	pm of ring

Existing Bridge Structure Abutments - ASD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	ASD Ultimate Bearing Value (kips) Rody LQFD	ASD Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD TFL (Kips)
East	D 2	803	805	A. 200 B. 150 C. 100	100 75 50	70 55 40	75 60 45	105 70
(Forward) Abutment	D-2	797	799	A. 200 D. 150 C. 100	100 75 50	65 50 35	70 55 40	140 105 70

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
10.7 ft	
16.0 ft	
21.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 1075 Driving Loss 0%
26.7 ft	Clay. Onit Weight 155 Ondrained Shear Strength 2000 Driving Loss 0 //
32.0 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
37.3 ft	Clay. One Weight 100 - One and a chergen 1200 - Brining 2000 076
42.7 ft	
48.0 ft	
53.3 ft	
58.7 ft	
64.0 ft	
69.3 ft	
74.7 ft	
80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B2-14CIP.DVN Project Name: MP 34.5 Bridge Widening Project Client: OTIC Computed By: KCH Project Manager:

Project Date: 10/31/2017

23.00 ft 23.00 ft 23.00 ft 0.00 ft 0.00 ft 0.00 ft

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Neglect Contribution from fill Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: Ultimate Considerations:	- Drilling: - Driving/Restrike - Ultimate: - Local Scour: - Long Term Scour: - Soft Soil:	
	ULTIMATE PROFILE	

Ultimate Curve Strength Unit Weight Layer Туре Thickness Driving Loss ≤0.00 psf T-79 Steel Cohesive 0.00% 125.00 pcf 6.00 ft 1 T-79 Steel 0.00% 125.00 pcf Cohesive 13.00 ft 2 1075.00 psf T-79 Steel 135.00 pcf 3 Cohesive 4.00 ft 0.00% 2000.00 psf T-79 Steel 135.00 pcf 4 Cohesive 10.50 ft 0.00% T-79 Steel 135.00 pcf 1250.00 psf 5 Cohesive 46.50 ft 0.00%

<u>TTL</u>

RESTRIKE - SKIN FRICTION

Depth Soil Type Effective Stress At Midpoint Sliding Friction Angle Adhesion Skin Skin 0.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 5.99 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 6.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 15.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 18.99 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 22.99 ft Cohesive N/A N/A 831.65 psf 13.04 Kips 33.49 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.49 ft Cohesive N/A N/A 1099.64 psf 102.42 Kips 33.51 ft Cohesive N/A N/A 1099.64 psf 102.42 Kips 33.51 ft Cohesive N/A N/A 1122.50 psf 124.46 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf						Boring B-2
0.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 5.99 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 15.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 15.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 18.99 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 23.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 23.01 ft Cohesive N/A N/A 873.15 psf 0.03 Kips 33.01 ft Cohesive N/A N/A 128.43 psf 58.26 Kips 33.51 ft Cohesive N/A N/A 1080.43 psf 58.26 Kips 33.51 ft Cohesive N/A N/A 1090.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 79.99 ft<	Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
5.99 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 6.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 15.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 19.01 ft Cohesive N/A N/A 0.00 psf 0.00 Kips 19.01 ft Cohesive N/A N/A 873.15 psf 0.03 Kips 22.99 ft Cohesive N/A N/A 891.65 psf 13.04 Kips 23.01 ft Cohesive N/A N/A 1388.43 psf 58.26 Kips 33.49 ft Cohesive N/A N/A 1383.23 psf 66.26 Kips 42.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 69.51 ft Cohesive N/A N/A 122.50 psf 140.41 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 251.46 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.46 Kips 5	0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft Cohesive N/A N/A N/A 0.00 psf 0.00 kips 15.01 ft Cohesive N/A N/A 0.00 psf 0.00 kips 18.99 ft Cohesive N/A N/A 0.00 psf 0.00 kips 22.99 ft Cohesive N/A N/A 891.65 psf 13.04 Kips 22.91 ft Cohesive N/A N/A 1278.43 psf 53.26 Kips 33.49 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.51 ft Cohesive N/A N/A 1050.14 psf 66.26 Kips 51.51 ft Cohesive N/A N/A 1022.50 psf 174.43 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 174.46 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips	5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft Cohesive N/A N/A N/A 0.00 psf 0.00 kips 18.99 ft Cohesive N/A N/A 0.00 psf 0.00 kips 19.01 ft Cohesive N/A N/A 873.15 psf 0.00 kips 22.99 ft Cohesive N/A N/A 891.65 psf 13.04 kips 23.01 ft Cohesive N/A N/A 1383.43 psf 53.26 kips 33.49 ft Cohesive N/A N/A 1383.23 psf 66.26 kips 33.51 ft Cohesive N/A N/A 1090.64 psf 102.62 kips 51.51 ft Cohesive N/A N/A 102.62 kips 102.62 kips 51.51 ft Cohesive N/A N/A 1122.50 psf 177.43 kips 69.51 ft Cohesive N/A N/A 1122.50 psf 251.49 kips 78.51 ft Cohesive N/A N/A N/A 1122.50 psf 257.58 kips 79.99 ft Cohesive N/A N/A N/A 0.	6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft Cohesive N/A N/A N/A O.00 psf 0.00 Kips 19.01 ft Cohesive N/A N/A N/A 873.15 psf 0.03 Kips 22.99 ft Cohesive N/A N/A 873.15 psf 0.03 Kips 23.01 ft Cohesive N/A N/A 873.15 psf 13.04 Kips 32.01 ft Cohesive N/A N/A 1278.43 psf 13.12 Kips 33.49 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.51 ft Cohesive N/A N/A 1368.41 psf 66.25 Kips 33.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 251.46 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A N/A 1	15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft Cohesive N/A N/A 873.15 psf 0.03 Kips 22.99 ft Cohesive N/A N/A N/A 1278.43 psf 13.12 Kips 33.01 ft Cohesive N/A N/A 1278.43 psf 13.12 Kips 33.49 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.51 ft Cohesive N/A N/A 1050.14 psf 66.35 Kips 42.51 ft Cohesive N/A N/A 1050.14 psf 66.35 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 110.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A N/A 0.00 Kips 5.01 ft Cohesive N/A N/A N/A 0.	18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
22.99 ft Cohesive N/A N/A N/A 891.65 psf 13.04 Kips 23.01 ft Cohesive N/A N/A N/A 1278.43 psf 13.12 Kips 32.01 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.49 ft Cohesive N/A N/A 1383.23 psf 66.26 Kips 33.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 251.44 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.9 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.9 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.9 ft Cohesive N/A N/A N/A 1122.50 psf 257.58 Kips 0.01 ft Cohesive N/A N/A	19.01 ft	Cohesive	N/A	N/A	873.15 psf	0.03 Kips 👘
23.01 ft Cohesive N/A N/A 1278.43 psf 13.12 Kips 32.01 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.49 ft Cohesive N/A N/A 1368.43 psf 66.26 Kips 33.51 ft Cohesive N/A N/A 1050.14 psf 66.35 Kips 42.51 ft Cohesive N/A N/A 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 78.95 ft Cohesive N/A N/A 1122.50 psf 257.58 Kips RESTRIKE - END BEARING Depth Soil Type Effective Stress At Tip Bearing Cap. Limiting End Bearing End Bearing 6.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A	22.99 ft	Cohesive	N/A	N/A	891.65 psf	13.04 Kips
32.01 ft Cohesive N/A N/A 1368.43 psf 58.26 Kips 33.49 ft Cohesive N/A N/A 1383.23 psf 66.26 Kips 33.51 ft Cohesive N/A N/A 1050.14 psf 66.26 Kips 33.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A N/A 122.50 psf 257.58 Kips 79.99 ft Cohesive N/A N/A N/A 0.00 Kips 5.99 ft Cohesive N/A N/A 0.00 Kips 5.99 ft	23.01 ft	Cohesive	N/A	N/A	1278.43 psf	13.12 Kips
33.49 ft Cohesive N/A N/A 1383.23 psf 66.26 Kips 33.51 ft Cohesive N/A N/A 1050.14 psf 66.35 Kips 42.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 257.58 Kips RESTRIKE - END BEARING Depth Soil Type Effective Stress At Tip Bearing Cap. Factor Limiting End Bearing End Bearing 6.01 ft Cohesive N/A N/A N/A 0.00 Kips 5.99 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 19.01 ft Cohesive <t< td=""><td>32.01 ft</td><td>Cohesive</td><td>N/A</td><td>N/A</td><td>1368.43 psf</td><td>58.26 Kips</td></t<>	32.01 ft	Cohesive	N/A	N/A	1368.43 psf	58.26 Kips
33.51 ft Cohesive N/A N/A 1050.14 psf 66.35 Kips 42.51 ft Cohesive N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 140.41 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips RESTRIKE - END BEARING Depth Soil Type Effective Stress At Tip Bearing Cap. Factor Limiting End Bearing End Bearing 0.01 ft Cohesive N/A N/A N/A 0.00 Kips 5.99 ft Cohesive N/A N/A N/A 0.00 Kips 13.01 ft Cohesive N/A N/A N/A 0.00 Kips 14.99 ft Cohesive N/A <td>33.49 ft</td> <td>Cohesive</td> <td>N/A</td> <td>N/A</td> <td>1383.23 psf</td> <td>66.26 Kips</td>	33.49 ft	Cohesive	N/A	N/A	1383.23 psf	66.26 Kips
42.51 ft Cohesive N/A N/A N/A 1099.64 psf 102.62 Kips 51.51 ft Cohesive N/A N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A 1122.50 psf 177.43 Kips 69.51 ft Cohesive N/A N/A 1122.50 psf 214.46 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 257.58 Kips RESTRIKE - END BEARING Depth Soil Type Effective Stress At Tip Bearing Cap. Factor Limiting End Bearing End Bearing 0.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft <td< td=""><td>33.51 ft</td><td>Cohesive</td><td>N/A</td><td>N/A</td><td>1050.14 psf</td><td>66.35 Kips</td></td<>	33.51 ft	Cohesive	N/A	N/A	1050.14 psf	66.35 Kips
51.51 ft Cohesive N/A N/A N/A 1122.50 psf 140.41 Kips 60.51 ft Cohesive N/A N/A N/A 1122.50 psf 177.43 Kips 69.51 ft Cohesive N/A N/A N/A 1122.50 psf 214.46 Kips 78.51 ft Cohesive N/A N/A 1122.50 psf 251.49 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 257.58 Kips 79.99 ft Cohesive N/A N/A 1122.50 psf 257.58 Kips RESTRIKE - END BEARING 0.01 ft Cohesive N/A N/A 1122.50 psf End 5.99 ft Cohesive N/A N/A N/A 0.00 Kips 6.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 19.01 ft Cohesive N/A N/A N/A 10.34 Kips 23.01 ft Cohesive N/A<	42.51 ft	Cohesive	N/A	N/A	1099.64 psf	102.62 Kips
60.51 ftCohesiveN/AN/AN/A1122.50 psf177.43 Kips69.51 ftCohesiveN/AN/AN/A1122.50 psf214.46 Kips78.51 ftCohesiveN/AN/A1122.50 psf251.49 Kips79.99 ftCohesiveN/AN/A1122.50 psf257.58 Kips RESTRIKE - END BEARING DepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips	51.51 ft	Cohesive	N/A	N/A	1122.50 psf	140.41 Kips
69.51 ftCohesiveN/AN/A1122.50 psf214.46 Kips78.51 ftCohesiveN/AN/AN/A1122.50 psf251.49 Kips79.99 ftCohesiveN/AN/AN/A1122.50 psf257.58 Kips RESTRIKE - END BEARING DepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips <t< td=""><td>60.51 ft</td><td>Cohesive</td><td>N/A</td><td>N/A</td><td>1122.50 psf</td><td>177.43 Kips</td></t<>	60.51 ft	Cohesive	N/A	N/A	1122.50 psf	177.43 Kips
78.51 ft 79.99 ftCohesiveN/AN/A1122.50 psf 1122.50 psf251.49 Kips 257.58 KipsDepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips22.99 ftCohesiveN/AN/AN/A0.00 Kips23.01 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/A <td< td=""><td>69.51 ft</td><td>Cohesive</td><td>N/A</td><td>N/A</td><td>1122.50 psf</td><td>214.46 Kips</td></td<>	69.51 ft	Cohesive	N/A	N/A	1122.50 psf	214.46 Kips
79.99 ftCohesiveN/AN/A1122.50 psf257.58 KipsDepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips19.91 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips60.	78.51 ft	Cohesive	N/A	N/A	1122.50 psf	251.49 Kips
RESTRIKE - END BEARINGDepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A10.34 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	79.99 ft	Cohesive	N/A	N/A	1122.50 psf	257.58 Kips
DepthSoil TypeEffective Stress At TipBearing Cap. FactorLimiting End BearingEnd Bearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips			RESTRIKE - EN	D BEARING		
At TipFactorBearingBearing0.01 ftCohesiveN/AN/AN/A0.00 Kips5.99 ftCohesiveN/AN/AN/A0.00 Kips6.01 ftCohesiveN/AN/AN/A0.00 Kips15.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A0.00 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A10.34 Kips33.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
0.01 ft Cohesive N/A N/A N/A 0.00 Kips 5.99 ft Cohesive N/A N/A N/A 0.00 Kips 6.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 18.99 ft Cohesive N/A N/A N/A 0.00 Kips 19.01 ft Cohesive N/A N/A N/A 0.00 Kips 22.99 ft Cohesive N/A N/A N/A 10.34 Kips 23.01 ft Cohesive N/A N/A N/A 19.24 Kips 32.01 ft Cohesive N/A N/A N/A 19.24 Kips 33.49 ft Cohesive N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A 12.03 Kips			At Tip	Factor	Bearing	Bearing
5.99 ft Cohesive N/A N/A N/A N/A 0.00 Kips 6.01 ft Cohesive N/A N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 18.99 ft Cohesive N/A N/A N/A 0.00 Kips 19.01 ft Cohesive N/A N/A N/A 0.00 Kips 22.99 ft Cohesive N/A N/A N/A 10.34 Kips 23.01 ft Cohesive N/A N/A N/A 19.24 Kips 32.01 ft Cohesive N/A N/A N/A 19.24 Kips 33.49 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A	0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft Cohesive N/A N/A N/A 0.00 Kips 15.01 ft Cohesive N/A N/A N/A 0.00 Kips 18.99 ft Cohesive N/A N/A N/A 0.00 Kips 19.01 ft Cohesive N/A N/A N/A 0.00 Kips 22.99 ft Cohesive N/A N/A N/A 10.34 Kips 23.01 ft Cohesive N/A N/A N/A 19.24 Kips 32.01 ft Cohesive N/A N/A N/A 19.24 Kips 33.49 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A 12.03 Kips 51.51 ft Cohesive N/A N/A 12.03 Kips 60.51 ft C	5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ftCohesiveN/AN/AN/A0.00 Kips18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A10.34 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips32.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips42.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips69.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ftCohesiveN/AN/AN/A0.00 Kips19.01 ftCohesiveN/AN/AN/A10.34 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips32.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips42.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips69.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ftCohesiveN/AN/AN/A10.34 Kips22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips32.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips42.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips69.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
22.99 ftCohesiveN/AN/AN/A10.34 Kips23.01 ftCohesiveN/AN/AN/A19.24 Kips32.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips42.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips69.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	19.01 ft	Cohesive	N/A	N/A	N/A	10.34 Kips
23.01 ftCohesiveN/AN/AN/A19.24 Kips32.01 ftCohesiveN/AN/AN/A19.24 Kips33.49 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A19.24 Kips33.51 ftCohesiveN/AN/AN/A12.03 Kips42.51 ftCohesiveN/AN/AN/A12.03 Kips51.51 ftCohesiveN/AN/AN/A12.03 Kips60.51 ftCohesiveN/AN/AN/A12.03 Kips69.51 ftCohesiveN/AN/AN/A12.03 Kips78.51 ftCohesiveN/AN/AN/A12.03 Kips79.99 ftCohesiveN/AN/AN/A12.03 Kips	22.99 ft	Cohesive	N/A	N/A	N/A	10.34 Kips
32.01 ft Cohesive N/A N/A N/A 19.24 Kips 33.49 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A N/A 12.03 Kips 51.51 ft Cohesive N/A N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	23.01 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
33.49 ft Cohesive N/A N/A N/A 19.24 Kips 33.51 ft Cohesive N/A N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A N/A 12.03 Kips 51.51 ft Cohesive N/A N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A 12.03 Kips	32.01 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
33.51 ft Cohesive N/A N/A N/A 12.03 Kips 42.51 ft Cohesive N/A N/A N/A 12.03 Kips 51.51 ft Cohesive N/A N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	33.49 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
42.51 ft Cohesive N/A N/A N/A 12.03 Kips 51.51 ft Cohesive N/A N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	33.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
51.51 ft Cohesive N/A N/A N/A 12.03 Kips 60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	42.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
60.51 ft Cohesive N/A N/A N/A 12.03 Kips 69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	51.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
69.51 ft Cohesive N/A N/A N/A 12.03 Kips 78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	60.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
78.51 ft Cohesive N/A N/A N/A 12.03 Kips 79.99 ft Cohesive N/A N/A N/A 12.03 Kips	69.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
79.99 ft Cohesive N/A N/A N/A 12.03 Kips	78.51 ft	Cohesive	N/A	N/A	N/A	12.03 Kips
	79.99 ft	Cohesive	N/A	N/A	N/A	12.03 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	10.34 Kips	10.37 Kips
22.99 ft	13.04 Kips	10.34 Kips	23.38 Kips
23.01 ft	13.12 Kips	19.24 Kips	32.36 Kips
32.01 ft	58.26 Kips	19.24 Kips	77.51 Kips
33.49 ft	66.26 Kips	19.24 Kips	85.50 Kips
33.51 ft	66.35 Kips	12.03 Kips	78.37 Kips
42.51 ft	102.62 Kips	12.03 Kips	114.65 Kips
51.51 ft	140.41 Kips	12.03 Kips	152.43 Kips
60.51 ft	177.43 Kips	12.03 Kips	189.46 Kips
69.51 ft	214.46 Kips	12.03 Kips	226.49 Kips
78.51 ft	251.49 Kips	12.03 Kips	263.52 Kips
79.99 ft	257.58 Kips	12.03 Kips	269.60 Kips

DRIVING - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 14'

Diameter CIF	!"	Diameter	CIP
--------------	-----------	----------	-----

Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A	N/A	0.00 psf	0.00 Kino
Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 873.15 psf 891.65 psf 1278.43 psf 1368.43 psf 1383.23 psf 1050.14 psf 1099.64 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.03 Kips 13.04 Kips 13.12 Kips 58.26 Kips 66.26 Kips 66.35 Kips 102.62 Kips 140.41 Kips 177.43 Kips 214.46 Kips 251.49 Kips
Cohesive	N/A DRIVING - END	N/A BEARING	1122.50 psf	257.58 Kips
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 10.34 Kips 10.34 Kips 19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips
	Cohesive Cohesive	CohesiveN/ACohesive <td< td=""><td>CohesiveN/AN/ACohesiveN/AN</td><td>Consistive N/A N/A N/A 873.15 psf Cohesive N/A N/A 873.15 psf Cohesive N/A N/A 891.65 psf Cohesive N/A N/A 1278.43 psf Cohesive N/A N/A 1383.23 psf Cohesive N/A N/A 1383.23 psf Cohesive N/A N/A 1050.14 psf Cohesive N/A N/A 1099.64 psf Cohesive N/A N/A 1122.50 psf Cohesive N/A N/A N/A Cohesive N/A N/A N/A Cohesive N/A</td></td<>	CohesiveN/AN/ACohesiveN/AN	Consistive N/A N/A N/A 873.15 psf Cohesive N/A N/A 873.15 psf Cohesive N/A N/A 891.65 psf Cohesive N/A N/A 1278.43 psf Cohesive N/A N/A 1383.23 psf Cohesive N/A N/A 1383.23 psf Cohesive N/A N/A 1050.14 psf Cohesive N/A N/A 1099.64 psf Cohesive N/A N/A 1122.50 psf Cohesive N/A N/A N/A Cohesive N/A N/A N/A Cohesive N/A

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 5.99 ft 6.01 ft 15.01 ft 18.99 ft	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips
19.01 ft 22.99 ft	0.03 Kips 13.04 Kips	10.34 Kips 10.34 Kips 10.24 Kips	10.37 Kips 23.38 Kips 32.36 Kips
23.01 ft 32.01 ft 33.49 ft	58.26 Kips 66.26 Kips	19.24 Kips 19.24 Kips 19.24 Kips	77.51 Kips 85.50 Kips
33.51 ft 42.51 ft 51 51 ft	66.35 Kips 102.62 Kips 140.41 Kips	12.03 Kips 12.03 Kips 12.03 Kips	78.37 Kips 114.65 Kips 152.43 Kips
60.51 ft 69.51 ft 78.51 ft 79.99 ft	177.43 Kips 214.46 Kips 251.49 Kips 257.58 Kips	12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips	189.46 Kips 226.49 Kips 263.52 Kips 269.60 Kips
13.33 11	201.001400		•

ULTIMATE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening

	-ge maan	ъ
14"	Diameter CI	Р

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-2 Skin Friction
0.01 ft 5.99 ft 6.01 ft 15.01 ft 18.99 ft 19.01 ft 22.99 ft 23.01 ft 33.49 ft 33.51 ft 42.51 ft 51.51 ft 69.51 ft 78.51 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 0.00 psf 0.00 psf 873.15 psf 891.65 psf 1278.43 psf 1368.43 psf 1383.23 psf 1050.14 psf 1099.64 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf 1122.50 psf	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.03 Kips 13.04 Kips 13.12 Kips 58.26 Kips 66.26 Kips 66.35 Kips 102.62 Kips 140.41 Kips 177.43 Kips 214.46 Kips 251.49 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	257.58 Kips
		ULTIMATE - EN	D BEARING		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 5.99 ft 6.01 ft 15.01 ft 18.99 ft 19.01 ft 22.99 ft 23.01 ft 32.01 ft 33.49 ft 33.51 ft 42.51 ft 60.51 ft 69.51 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 10.34 Kips 10.34 Kips 19.24 Kips 19.24 Kips 19.24 Kips 19.24 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips 12.03 Kips
70 00 fl	Cohesive	N/A	N/A	N/A	12.03 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft GSE=Etw. 808	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	10.34 Kips	10.37 Kips
22.99 ft	13.04 Kips	10.34 Kips	23.38 Kips
23.01 ft 32.01 ft	13.12 Kips 58.26 Kips 66.26 Kips	19.24 Kips 19.24 Kips 19.24 Kips	32.36 Kips 77.51 Kips 85.50 Kips
33.51 ft	66.35 Kips	12.03 Kips	78.37 Kips - DO 38,77 Fr (Elw, 7692)
42.51 ft	102.62 Kips	12.03 Kips	114.65 Kips - O 50,92 fr (Elw, 7592)
51.51 ft 60.51 ft 69 51 ft	140.41 Kips 177.43 Kips 214.46 Kips	12.03 Kips 12.03 Kips 12.03 Kips	152.43 Kips 189.46 Kips 226 49 Kips 226 49 Kips
78.51 ft	251.49 Kips	12.03 Kips	263.52 Kips → A© 75,22 17 (Ftw. 1331)
79.99 ft	257.58 Kips	12.03 Kips	269.60 Kips

Temporary Bridge Structure Abutments - LRFD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	
East (Forward) Abutment	B-2	803	805	390	273	- Botton	n of	

Existing Bridge Structure Abutments - ASD								
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	Ast Ultimate Bearing Value (kips) Rady LRPD	ASD Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LRFD TSL (Rips)
East (Forward) Abutment	B-2	803	805	280	140	76,0,8	-	
				A.250	125	75	00	175
				8,200	100	60	65	140
				C. 150	75	50	55	105
				P. 100	50	35	40	70
		797	799	280	140	78.0.B.	-	}
				A. 200	125	65	70	5 17
				B. 200	100	55	60	140
				C. 150	75	45	50	105
				2,100	50	30	35	70

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft 10.7 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft	
21.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 1075 Driving Loss 0%
26.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
32.0 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
37.3 ft	
42.7 ft	
48.0 ft	
53.3 ft	
58.7 ft	
64.0 ft	
69.3 ft	
74.7 ft	
80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B2-16CIP.DVN Project Name: MP 34.5 Bridge Widening Project Date: 10/31/2017 Project Client: OTIC Computed By: KCH Project Manager: **PILE INFORMATION** Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Neglect Contribution from fill Diameter of Pile: 16.00 in **ULTIMATE CONSIDERATIONS** 23.00 ft Water Table Depth At Time Of: - Drilling: - Driving/Restrike 23.00 ft 23.00 ft - Ultimate: - Local Scour: 0.00 ft **Ultimate Considerations:** - Long Term Scour: 0.00 ft 0.00 ft - Soft Soil: **ULTIMATE PROFILE**

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	6.00 ft	0.00%	125.00 pcf	∑50.00 psf	T-79 Steel
2	Cohesive	13.00 ft	0.00%	125.00 pcf	20.00 psf	T-79 Steel
3	Cohesive	4.00 ft	0.00%	135.00 pcf	1075.00 psf	T-79 Steel
4	Cohesive	10.50 ft	0.00%	135.00 pcf	2000.00 psf	T-79 Steel
5	Cohesive	46.50 ft	0.00%	135.00 pcf	1250.00 psf	T-79 Steel

RESTRIKE - SKIN FRICTION

				Boring B					
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction				
0 01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips				
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips				
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips				
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips				
18 99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips				
19.01 ft	Cohesive	N/A	N/A	862.10 psf	0.04 Kips				
22.99 ft	Cohesive	N/A	N/A	878.29 psf	14.68 Kips				
23.01 ft	Cohesive	N/A	N/A	1249.67 psf	14.77 Kips				
32.01 ft	Cohesive	N/A	N/A	1328.42 psf	64.85 Kips				
33.49 ft	Cohesive	N/A	N/A	1341.37 psf	73.66 Kips				
33.51 ft	Cohesive	N/A	N/A	1027.10 psf	73.76 Kips				
42.51 ft	Cohesive	N/A	N/A	1070.41 psf	114.12 Kips				
51.51 ft	Cohesive	N/A	N/A	1113.73 psf	157.74 Kips				
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	200.72 Kips				
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	243.03 Kips				
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	285.35 Kips				
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	292.31 Kips				
	RESTRIKE - END BEARING								
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing				
0.01 ft	Cohesive	NI/A	N/A	N/A	0.00 Kips				
5.00 ft	Cohesive	N/A	N/A	N/A	0.00 Kips				
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips				
15 01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips				
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips				
19.01 ft	Cohesive	N/A	N/A	N/A	13.51 Kips				
22.99 ft	Cohesive	N/A	N/A	N/A	13.51 Kips				
23.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips				
32.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips				
33.49 ft	Cohesive	N/A	N/A	N/A	25.13 Kips				
33.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
42.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
51.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
60.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
69.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
78.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
79.99 ft	Cohesive	N/A	N/A	N/A	15.71 Kips				
RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.04 Kips	13.51 Kips	13.54 Kips
22.99 ft	14.68 Kips	13.51 Kips	28.19 Kips
23.01 ft	14.77 Kips	25 13 Kips	39.90 Kips
32.01 ft 33.49 ft	64.85 Kips 73.66 Kips	25.13 Kips 25.13 Kips 25.13 Kips	89.99 Kips 98.79 Kips
33.51 ft 42.51 ft 51.51 ft	73.76 Kips 114.12 Kips 157.74 Kips	15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips	129.82 Kips 173.44 Kips 216.42 Kips
69.51 ft	243.03 Kips	15.71 Kips	258.74 Kips
78.51 ft	285.35 Kips	15.71 Kips	301.06 Kips
79.99 ft	292.31 Kips	15.71 Kips	308.02 Kips

DRIVING - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 16" Diameter CIP

					D ' D 0
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	862.10 psf	0.04 Kips
22.99 ft	Cohesive	N/A	N/A	878.29 psf	14.68 Kips
23.01 ft	Cohesive	N/A	N/A	1249.67 psf	14.77 Kips
32.01 ft	Cohesive	N/A	N/A	1328.42 psf	64.85 Kips
33.49 ft	Cohesive	N/A	N/A	1341.37 psf	73.66 Kips
33.51 ft	Cohesive	N/A	N/A	1027.10 psf	73.76 Kips
42.51 ft	Cohesive	N/A	N/A	1070.41 psf	114.12 Kips
51.51 ft	Cohesive	N/A	N/A	1113.73 psf	157.74 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	200.72 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	243.03 Kips
,78.51 ft	Cohesive	N/A	N/A	1122.50 psf	285.35 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	292.31 Kips
		DRIVING - END	BEARING		
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At Tip	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	13.51 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	13.51 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	15.71 Kips

DRIVING - SUMMARY OF CAPACITIES

Skin Friction	End Bearing	Total Capacity
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.00 Kips	0.00 Kips	0.00 Kips
0.04 Kips	13.51 Kips	13.54 Kips
14.68 Kips	13.51 Kips	28.19 Kips
14.77 Kips	25.13 Kips	39.90 Kips
64.85 Kips	25.13 Kips	89.99 Kips
73.66 Kips	25.13 Kips	98.79 Kips
73.76 Kips	15.71 Kips	89.47 Kips
114.12 Kips 157.74 Kips	15.71 Kips 15.71 Kips 15.71 Kips	129.82 Kips 173.44 Kips 216.42 Kips
243.03 Kips 285.35 Kips 292.31 Kips	15.71 Kips 15.71 Kips 15.71 Kips 15.71 Kips	258.74 Kips 301.06 Kips 308.02 Kips
	Skin Friction 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.04 Kips 14.68 Kips 14.68 Kips 14.77 Kips 64.85 Kips 73.66 Kips 73.76 Kips 114.12 Kips 157.74 Kips 200.72 Kips 243.03 Kips 285.35 Kips 292.31 Kips	Skin FrictionEnd Bearing0.00 Kips0.00 Kips0.04 Kips13.51 Kips14.68 Kips13.51 Kips14.68 Kips25.13 Kips14.77 Kips25.13 Kips64.85 Kips25.13 Kips73.66 Kips25.13 Kips73.76 Kips15.71 Kips114.12 Kips15.71 Kips157.74 Kips15.71 Kips200.72 Kips15.71 Kips243.03 Kips15.71 Kips285.35 Kips15.71 Kips292.31 Kips15.71 Kips

ULTIMATE - SKIN FRICTION

OTIC MP 34.5 Bridge Widening 16" Diameter CIP

		OFTIMATE OF			
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	862.10 psf	0.04 Kips
22.99 ft	Cohesive	N/A	N/A	878.29 psf	14.68 Kips
23.01 ft	Cohesive	N/A	N/A	1249.67 psf	14.77 Kips
32.01 ft	Cohesive	N/A	N/A	1328.42 psf	64.85 Kips
33.49 ft	Cohesive	N/A	N/A	1341.37 psf	73.66 Kips
33.51 ft	Cohesive	N/A	N/A	1027.10 psf	73.76 Kips
42.51 ft	Cohesive	N/A	N/A	1070.41 psf	114.12 Kips
51.51 ft	Cohesive	N/A	N/A	1113.73 psf	157.74 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	200.72 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	243.03 Kips
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	285.35 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	292.31 Kips
		<u>ULTIMATE - El</u>	ND BEARING		
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At Tip	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	13.51 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	13.51 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	25.13 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	15.71 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	15.71 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft GSE=Elev. 808	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips
6 01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.04 Kips	13.51 Kips	13.54 Kips
22.99 ft	14.68 Kips	13.51 Kips	28.19 Kips
23.01 ft	14.77 Kips	25.13 Kips	39.90 Kips
32.01 ft	64.85 Kips	25.13 Kips	89.99 Kips
33.49 ft	73.66 Kips	25.13 Kips	98.79 Kips
33.51 ft	73.76 Kips	15.71 Kips	89.47 Kips (Full 7/02+)
42.51 ft	114.12 Kips	15.71 Kips	129.82 Kips
51.51 ft	157.74 Kips	15.71 Kips	173.44 Kips
60.51 ft	200.72 Kips	15.71 Kips	216.42 Kips BR (7 (5h/Flaw, 740+)
69.51 ft	243.03 Kips	15.71 Kips	258.74 Kips
78.51 ft	285.35 Kips	15.71 Kips	301.06 Kips 00 18.28 (Elw. 729+)
79.99 ft	292.31 Kips	15.71 Kips	308.02 Kips

Temporary Bridge Structure Abutments - LRFD							
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
East (Forward) Abutment	B-2	. 803	805	450	315	>Both Bor	ing

Existing Bridge Structure Abutments - ASD]	
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	A3D Ultimate Bearing Value (kips) Rude LRFD	AS Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)	LR FD TFL
East (Forward) Abutment	P 2	803	805	360 A, 300 B, 250 C. 200 P. 150	180 150 125 100 75	7000 75 65 55 45	80 70 60 50	210 175 140 105
	B-2 -	797	799	A. 300 B. 250 C. 200 D. 150	180 150 150 100 75	70.0,8 70 60 50 40	- 75 65 55 45	210 175 140 105

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft 10.7 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft	Clay: Unit Weight 135 Undrained Shear Strength 1075 Driving Loss 0%
26.7 ft	Clay: Unit Weight 135 Undrained Shear Strength 2000 Driving Loss 0%
32.0 ft 37.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
42.7 ft 48.0 ft	
53.3 ft	
58.7 ft 64.0 ft	
69.3 ft	
74.7 ft 80.0 ft	

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: T:\GEOTECH\PROJEC~4\B2NOFILL.DVN Project Name: MP 34.5 Bridge Widening Project Client: OTIC Computed By: KCH Project Manager:

Project Date: 10/31/2017

23.00 ft

23.00 ft

23.00 ft

0.00 ft

0.00 ft

0.00 ft

PILE INFORMATION

Pile Type: H Pile - HP10X42 Top of Pile: 0.00 ft Neglect contribution from fill -Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:

- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	6.00 ft	0.00%	125.00 pcf		T-79 Steel
2	Cohesive	13.00 ft	0.00%	125.00 pcf	C0.00 psf	T-79 Steel
3	Cohesive	4.00 ft	0.00%	135.00 pcf	1075.00 psf	T-79 Steel
4	Cohesive	10.50 ft	0.00%	135.00 pcf	2000.00 psf	T-79 Steel
5	Cohesive	46.50 ft	0.00%	135.00 pcf	1250.00 psf	T-79 Steel

RESTRIKE - SKIN FRICTION

					Doming D 1
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	907.58 psf	0.03 Kips
22.99 ft	Cohesive	N/A	N/A	933.30 psf	12.27 Kips
23.01 ft	Cohesive	N/A	N/A	1368.08 psf	12.35 Kips
32.01 ft	Cohesive	N/A	N/A	1493.14 psf	56.64 Kips
33.49 ft	Cohesive	N/A	N/A	1513.70 psf	64.64 Kips
33.51 ft	Cohesive	N/A	N/A	1121.94 psf	64.73 Kips
42.51 ft	Cohesive	N/A	N/A	1122.50 psf	98.03 Kips
51.51 ft	Cohesive	N/A	N/A	1122.50 psf	131.32 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	164.62 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	197.91 Kips
. 78.51 ft	Cohesive	N/A	N/A	1122.50 psf	231.21 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	236.69 Kips
		RESTRIKE - EN	D BEARING	·	
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0 01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	6.57 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	6.57 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	7.64 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	6.57 Kips	6.60 Kips
22.99 ft	12.27 Kips	6.57 Kips	18.84 Kips
23.01 ft	12.35 Kips	12.22 Kips	24.57 Kips
32.01 ft	56.64 Kips	12.22 Kips	68.86 Kips
33.49 ft	64.64 Kips	12.22 Kips	76.85 Kips
33.51 ft	64.73 Kips	7.64 Kips	72.37 Kips
42.51 ft	98.03 Kips	7.64 Kips	105.66 Kips
51.51 ft	131.32 Kips	7.64 Kips	138.96 Kips
60.51 ft	164.62 Kips	7.64 Kips	172.25 Kips
69.51 ft	197.91 Kips	7.64 Kips	205.55 Kips
78.51 ft	231.21 Kips	7.64 Kips	238.85 Kips
79.99 ft	236.69 Kips	7.64 Kips	244.32 Kips

DRIVING - SKIN FRICTION

					111 10742
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Boring B-2 Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	907.58 psf	0.03 Kips
22.99 ft	Cohesive	N/A	N/A	933.30 psf	12.27 Kips
23.01 ft	Cohesive	N/A	N/A	1368.08 psf	12.35 Kips
32.01 ft	Cohesive	N/A	N/A	1493.14 psf	56.64 Kips
33.49 ft	Cohesive	N/A	N/A	1513.70 psf	64.64 Kips
33.51 ft	Cohesive	N/A	N/A	1121.94 psf	64.73 Kips
42.51 ft	Cohesive	N/A	N/A	1122.50 psf	98.03 Kips
51.51 ft	Cohesive	N/A	N/A	1122.50 psf	131.32 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	164.62 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	197.91 Kips
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	231.21 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	236.69 Kips
		DRIVING - END	BEARING		
Depth	Soil Type	Effective Stress	Bearing Cap. Factor	Limiting End	End Bearing
0.04.5	.			bouring	boaring
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 π	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Conesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Conesive	N/A	N/A	N/A	0.00 Kips
19.01 π	Conesive	N/A	N/A	N/A	6.57 Kips
22.99 π	Conesive	N/A	N/A	N/A	6.57 Kips
23.01 π	Conesive	N/A	N/A	N/A	12.22 Kips
32.01 π	Conesive	N/A	N/A	N/A	12.22 Kips
33.49 TL	Conesive		N/A	N/A	12.22 Kips
33.51 11	Conesive		N/A	N/A	7.64 Kips
42.31 IL	Conesive		N/A	N/A	7.64 Kips
51.51 TL	Conesive	IN/A	IN/A	IN/A	7.64 Kips
00.31 IL	Cohesive	IN/A	N/A	N/A	7.64 Kips
09.01 IL	Cohesive	IN/A	IN/A	N/A	7.64 KIPS
10.01 IL	Cohesive	IN/A	N/A	N/A	7.64 Kips
19.99 TL	Conesive	IN/A	N/A	N/A	7.64 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft	0.03 Kips	6.57 Kips	6.60 Kips
22.99 ft	12.27 Kips	6.57 Kips	18.84 Kips
23.01 ft	12.35 Kips	12.22 Kips	24.57 Kips
32.01 ft	56.64 Kips	12.22 Kips	68.86 Kips
33.49 ft	64.64 Kips	12.22 Kips	76.85 Kips
33.51 ft	64.73 Kips	7.64 Kips	72.37 Kips
42.51 ft	98.03 Kips	7.64 Kips	105.66 Kips
51.51 ft	131.32 Kips	7.64 Kips	138.96 Kips
60.51 ft	164.62 Kips	7.64 Kips	172.25 Kips
69.51 ft	197.91 Kips	7.64 Kips	205.55 Kips
78.51 ft	231.21 Kips	7.64 Kips	238.85 Kips
79.99 ft	236.69 Kips	7.64 Kips	244.32 Kips

ULTIMATE - SKIN FRICTION

		OZTIMUTE OT			Poring D 2
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	907.58 psf	0.03 Kips
22.99 ft	Cohesive	N/A	N/A	933.30 psf	12.27 Kips
23.01 ft	Cohesive	N/A	N/A	1368.08 psf	12.35 Kips
32.01 ft	Cohesive	N/A	N/A	1493.14 psf	56.64 Kips
33.49 ft	Cohesive	N/A	N/A	1513.70 psf	64.64 Kips
33.51 ft	Cohesive	N/A	N/A	1121.94 psf	64.73 Kips
42.51 ft	Cohesive	N/A	N/A	1122.50 psf	98.03 Kips
51.51 ft	Cohesive	N/A	N/A	1122.50 psf	131.32 Kips
60.51 ft	Cohesive	N/A	N/A	1122.50 psf	164.62 Kips
69.51 ft	Cohesive	N/A	N/A	1122.50 psf	197.91 Kips
78.51 ft	Cohesive	N/A	N/A	1122.50 psf	231.21 Kips
79.99 ft	Cohesive	N/A	N/A	1122.50 psf	236.69 Kips
		<u>ULTIMATE - EN</u>	D BEARING	·	·
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At TIP	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
5.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
6.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
15.01 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
18.99 ft	Cohesive	N/A	N/A	N/A	0.00 Kips
19.01 ft	Cohesive	N/A	N/A	N/A	6.57 Kips
22.99 ft	Cohesive	N/A	N/A	N/A	6.57 Kips
23.01 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
32.01 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
33.49 ft	Cohesive	N/A	N/A	N/A	12.22 Kips
33.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
42.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
51.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
60.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
69.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
78.51 ft	Cohesive	N/A	N/A	N/A	7.64 Kips
79.99 ft	Cohesive	N/A	N/A	N/A	7.64 Kips

ULTIMATE - SUMMARY OF CAPACITIES

0.01 ft $GSE=FUW.303$ 0.00 Kips0.00 Kips0.00 Kips5.99 ft0.00 Kips0.00 Kips0.00 Kips0.00 Kips6.01 ft0.00 Kips0.00 Kips0.00 Kips0.00 Kips15.01 ft0.00 Kips0.00 Kips0.00 Kips0.00 Kips18.99 ft0.00 Kips0.00 Kips0.00 Kips0.00 Kips19.01 ft0.03 Kips6.57 Kips6.60 Kips22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips33.49 ft64.64 Kips12.22 Kips68.86 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips60.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips79.00 ft236.60 Kips7.64 Kips24.20 Kips	Depth	Skin Friction	End Bearing	Total Capacity
5.99 ft0.00 Kips0.00 Kips0.00 Kips6.01 ft0.00 Kips0.00 Kips0.00 Kips15.01 ft0.00 Kips0.00 Kips0.00 Kips18.99 ft0.00 Kips0.00 Kips0.00 Kips19.01 ft0.03 Kips6.57 Kips6.60 Kips22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips33.49 ft64.64 Kips12.22 Kips68.86 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips33.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips60.51 ft197.91 Kips7.64 Kips238.85 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips79.00 ft236.69 Kips7.64 Kips238.85 Kips	0.01 ft GSE=Erev. 808	0.00 Kips	0.00 Kips	0.00 Kips
6.01 ft0.00 Kips0.00 Kips0.00 Kips15.01 ft0.00 Kips0.00 Kips0.00 Kips18.99 ft0.00 Kips0.00 Kips0.00 Kips19.01 ft0.03 Kips6.57 Kips6.60 Kips22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips 105.66 Kips33.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips 172.25 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips 20.555 Kips69.51 ft197.91 Kips7.64 Kips238.85 Kips78.00 ft231.21 Kips7.64 Kips238.85 Kips79.00 ft236.60 Kips7.64 Kips238.85 Kips	5.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
15.01 ft0.00 Kips0.00 Kips0.00 Kips18.99 ft0.00 Kips0.00 Kips0.00 Kips19.01 ft0.03 Kips6.57 Kips6.60 Kips22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips79.09 ft236.60 Kips7.64 Kips238.85 Kips	6.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.99 ft 0.00 Kips 0.00 Kips 0.00 Kips 19.01 ft 0.03 Kips 6.57 Kips 6.60 Kips 22.99 ft 12.27 Kips 6.57 Kips 18.84 Kips 23.01 ft 12.35 Kips 12.22 Kips 24.57 Kips 32.01 ft 56.64 Kips 12.22 Kips 68.86 Kips 33.49 ft 64.64 Kips 12.22 Kips 68.86 Kips 33.51 ft 64.73 Kips 7.64 Kips 72.37 Kips 42.51 ft 98.03 Kips 7.64 Kips 105.66 Kips 51.51 ft 131.32 Kips 7.64 Kips 138.96 Kips 60.51 ft 164.62 Kips 7.64 Kips 172.25 Kips 69.51 ft 197.91 Kips 7.64 Kips 238.85 Kips 78.51 ft 231.21 Kips 7.64 Kips 238.85 Kips	15.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.01 ft0.03 Kips6.57 Kips6.60 Kips22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips60.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips238.85 Kips	18.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
22.99 ft12.27 Kips6.57 Kips18.84 Kips23.01 ft12.35 Kips12.22 Kips24.57 Kips32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips238.85 Kips	19.01 ft	0.03 Kips	6.57 Kips	6.60 Kips
23.01 ft12.35 Kips12.22 Kips24.57 Kips32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips 105.66 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips 172.25 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips 205.55 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips234.23 Kips	22.99 ft	12.27 Kips	6.57 Kips	18.84 Kips
32.01 ft56.64 Kips12.22 Kips68.86 Kips33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips 105.66 Kips42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips 172.25 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips 205.55 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips244.23 Kips	23.01 ft	12.35 Kips	12.22 Kips	24.57 Kips
33.49 ft64.64 Kips12.22 Kips76.85 Kips33.51 ft64.73 Kips7.64 Kips72.37 Kips $\sim 0.40.96 fr (Free, 1071)$)42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips ~ 0.51 ft164.62 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips ~ 0.555 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips ~ 0.555 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips79.99 ft236.60 Kips7.64 Kips244.23 Kips	32.01 ft	56.64 Kips	12.22 Kips	68.86 Kips
33.51 ft64.73 Kips7.64 Kips72.37 Kips $CO 40.96 ft (Eu.7671)$ 42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips 172.25 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips $CO 40.96 ft (Eu.7541)$ 69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips79.99 ft236.69 Kips7.64 Kips244.23 Kips	33.49 ft	64.64 Kips	12.22 Kips	76.85 Kips
42.51 ft98.03 Kips7.64 Kips105.66 Kips51.51 ft131.32 Kips7.64 Kips138.96 Kips60.51 ft164.62 Kips7.64 Kips172.25 Kips69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips234.22 Kips	33.51 ft	64.73 Kips	7.64 Kips	72.37 Kips ~ (Q 40.98 fr (Elw. 7672)
51.51 ft131.32 Kips7.64 Kips138.96 Kips $(Eu. 7542)$ 60.51 ft164.62 Kips7.64 Kips172.25 Kips $(Eu. 7402)$ 69.51 ft197.91 Kips7.64 Kips205.55 Kips78.51 ft231.21 Kips7.64 Kips238.85 Kips70.90 ft236.60 Kips7.64 Kips234.22 Kips	42.51 ft	98.03 Kips	7.64 Kips	105.66 Kips
60.51 ft 164.62 Kips 7.64 Kips 172.25 Kips AB (Fue, 7405) 69.51 ft 197.91 Kips 7.64 Kips 205.55 Kips AB (Fue, 7405) 78.51 ft 231.21 Kips 7.64 Kips 238.85 Kips 70.90 ft 236.69 Kips 7.64 Kips 244.22 Kips	51.51 ft	131.32 Kips	7.64 Kips	138.96 Kips
69.51 ft 197.91 Kips 7.64 Kips 205.55 Kips 205.55 Kips 78.51 ft 231.21 Kips 7.64 Kips 238.85 Kips 70.90 ft 236.69 Kips 7.64 Kips 234.22 Kips	60.51 ft	164.62 Kips	7.64 Kips	172.25 Kips 0910 05 (514, 7405)
78.51 ft 231.21 Kips 7.64 Kips 238.85 Kips	69.51 ft	197.91 Kips	7.64 Kips	205.55 Kips
70.00 ft	78.51 ft	231.21 Kips	7.64 Kips	238.85 Kips
13.33 m 230.03 mps 1.04 mps 244.32 mps	79.99 ft	236.69 Kips	7.64 Kips	244.32 Kips

		Temporary	Bridge Stru	cture Abutm	ents - LRFD		
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	R _{ndr} Max (kips)	Max TFL (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)
East (Forward) Abutment	B-2	803	805	350	245	7Botte Bori	n of

		Existing	Bridge Stru	cture Abutm	ents - ASD			1	
Location	Boring Number	Assumed Bottom of Pile Cap Elevation (feet)	Assumed Cut-Off Pile Elevation (feet)	ASD Ultimate Bearing Value (kips)	ASD Unfactored Design Load (kips)	Estimated Pile Length (feet)	Order Pile Length (feet)		
				300	150	7B.0.B.	_	1	
East (Forward) Abutment	B-2			A. 200	100	65	70		
		803	805	B. 150	75	50	55		
				C. 100	50	40	45		
				300	150	>0.0.6			
				A. 200	/00	60	65	1	
		797	799	6, 150	75	45	50]	
				C. 100	50	35	40		

	Soil Profile
0.0 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
5.3 ft 10.7 ft	Clay: Unit Weight 125 Undrained Shear Strength 0 Driving Loss 0%
16.0 ft 21.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 1075 Driving Loss 0%
26.7 ft	Clay: Unit weight 135 Undrained Shear Strength 2000 Driving Loss 0%
32.0 ft 37.3 ft	Clay: Unit Weight 135 Undrained Shear Strength 1250 Driving Loss 0%
42.7 ft	
48.0 ft 53.3 ft	
58.7 ft	
64.0 ft	
74.7 ft	
80.0 ft	

ITEM LEGEND

	ITEM SP 404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG 76-22 (FR) (T=1-1/2")	27 ITEM	SP 605	6" SHALLOW PIPE UNDERDRAIN, WITH FABRIC WRAP (30")
2	ITEM SP 402	ASPHALT CONCRETE INTERMEDIATE COURSE OR RECYCLED ASPHALT CONCRETE INTERMEDIATE COURSE, PG 76-22 (FR) (T=1-3/4")	28 ITEM	SP 404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG 76-22 (FR) (T=1-1/4")
3	ITEM SP 302	ASPHALT CONCRETE BASE, PG 64-22 (T=11-1/2") (2 EQUAL LIFTS) (SEE NOTE 1)	29) ITEM	SP 403	ASPHALT CONCRETE LEVELING COURSE, USING CRUSHED STONE, PG 76-22 (FR) (VARIABLE DEPTH)
4	ITEM 407	NON-TRACKING TACK COAT FOR INTERMEDIATE COURSE (APPLIED @ 0.06 GAL./S.Y.)	30 ITEM	254	PAVEMENT PLANING, ASPHALT CONCRETE (VARIABLE DEPTH, MIN. DEPTH 1")
5	ITEM 407	NON-TRACKING TACK COAT (APPLIED @ 0.075 GAL./S.Y.)	31 ITEM	SP 404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG 64-22 (T=2")
6	ITEM SP 304	AGGREGATE BASE (T=6")	32 ITEM	609	CURB, TYPE 4-C
7	ITEM SP 304	AGGREGATE BASE (VARIABLE TH.) (WITHOUT GUARDRAIL)	33) ІТЕМ	622	CONCRETE BARRIER, SINGLE SLOPE, TYPE C-50, AS PER PLAN
8	ITEM 206	CHEMICALLY STABILIZED SUBGRADE, AS PER PLAN, SEE SHEET X (NOT USED)	34) ІТЕМ	1 609	ASPHALT CONCRETE CURB, TYPE 1, PG 64-22
9	ITEM SP 404	ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG 64-22 (T=1-1/2")			
(10)	ITEM SP 402	ASPHALT CONCRETE INTERMEDIATE COURSE OR RECYCLED ASPHALT CONCRETE INTERMEDIATE COURSE, PG 64-22 (T=1-3/4")			
(11)	ITEM SP 302	ASPHALT CONCRETE BASE, PG 64-22 (SHOULDER) (T=8")			
12	ITEM SP 304	AGGREGATE BASE (SHOULDER) (T=9-1/2")			
13	ITEM 659	SEEDING AND MULCHING			
14	ITEM SP 627	STONE SHOULDER PROTECTION (WITH GUARDRAIL) (T=3")			
15	ITEM SPECIAL	SONIC NAP ALERT PATTERN (SNAP)			
16	ITEM 606	GUARDRAIL, TYPE MGS WITH LONG STEEL POSTS			
17	ITEM SP 404A	JOINT SEALER (APPLIED TO VERTICAL FACE, SP 402, SP 404)			
18	ITEM 252	FULL DEPTH PAVEMENT SAWING			
19	ITEM 659	TOPSOIL (T=3")			NOTES
20	ITEM 209	LINEAR GRADING, AS PER PLAN			
21	ITEM 526	REINFORCED CONCRETE APPROACH SLAB (T=12"), AS PER PLAN	NOTE T:	ON SURF COURSE	- NON-TRACKING TACK COAT (APPLIED @ U/075 GALTS T.) SHALL BE FLACED FACE OF SP 302 AND ITEM 407 - NON-TRACKING TACK COAT FOR INTERMEDIATE SHALL BE PLACED BETWEEN THE LIFTS OF SP 302.
22)	ITEM SP 304	AGGREGATE BASE (T=9")	NOTE 2:	THE TRA	VELED LANE PAVEMENT COMPOSITION WILL EXTEND 1 FOOT INTO THE SHOULDER.
(23)	ITEM 204	SUBGRADE COMPACTION	NOTE 3:	ASPHALT	T/CONCRETE CURB SHALL BE SEALED PER THE REQUIREMENTS OF SP 400.
24	ITEM 609	CURB, TYPE 4-A	NOTE 4:	ON SHEE	LIVILINI AND GITOOLDEN WIDTHS AND GROSS SLOPES, SEE PAVEIVIENT DETAILS FTS 63-65 .
25	ITEM SP 605	6" BASE PIPE UNDERDRAIN, WITH FABRIC WRAP (18")			
(26)	ITEM SP 605	6" SHALLOW PIPE UNDERDRAIN, WITH FABRIC WRAP (24")			

0

(DESIGNED	CHECKED	NO.	REVISIONS	BY DA	TE DESIGN AGENCY	
12	PROJECI 43-19-02	TYPICAL SECTIONS	ССН	۲N	1	ADDENDUM #1	CLH 2-5	-19	
4		PROPOSED NORMAL RESURFACING AND LEGEND	DRAWN	IN CHARGE		•	•	CPD GROUP	
)	DAIE: 11/30/18		CLH	TJW				520 South Main Street, Suite 2531, Akron, Ohio 44311	330-572-2100 Fax 330-572-2101
OHIO TURNPIKE	UHIO TILI	RNPIKE AND INFRAS	TRU	I L じ	L L L L	COM	5	NOISS	OHIO
}				, ,					}

EXISTING ITEM LEGEND

(A) ASPHALT CONCRETE (T=5"±)

(B) CONCRETE PAVEMENT (T=10"±)

(C) AGGREGATE BASE (T=6" \pm)

(D) AGGREGATE BASE (T=10 1/2"± AVERAGE)

 $(\underbrace{E}) \begin{array}{c} \text{REINFORCED CONCRETE APPROACH SLAB} \\ (\underline{T}=10"\pm) \end{array}$

(F GUARDRAIL

(G ASPHALT CONCRETE (T=9"±)

Ο

(00 07 07 10 10 000		DESIGNED	CHECKED	NO.	REVISIONS	BY DAT	TE DESIGN AGENCY	
1		PROJECI 43-19-02	TYPICAL SECTIONS	ССН	۲N	+	ADDENDUM #1	CLH 2-5-1	19	
5 23	[_		PROPOSED NORMAL AND RESURFACING/WIDENING	DRAWN	IN CHARGE			•	CPD GROUP	
)		UAIE: 11/30/18		ССН	MLT			•	520 South Main Street, Suite 2531, Akron, Ohio 44311	330-572-2100 Fax 330-572-2101
OHO										OHO
TURNPIKE			KNPIKE AND INFKASI	Ď Y		r	E COM)) 2	<u>SCION</u>	TURNPIKE
}										}

FOR ADDITIONAL NOTES, EXISTING AND PROPOSED LEGEND, SEE SHEET 4.

Ο

SEQUENCE OF CONSTRUCTION

THE INTENT OF THIS PROJECT IS TO WIDEN THE BRIDGE LOCATED AT MILEPOST (M.P.) 34.5 OVER STATE ROUTE 108 TO A TYPICAL THREE LANE SECTION AND TO REMOVE THE BRIDGE LOCATED AT M.P. 34.2 OVER THE NOW ABANDONED RAILROAD LINE. WHILE MAINTAINING TWO (2) LANES OF TRAFFIC IN BOTH DIRECTIONS. THE CROSSING AT M.P. 34.2 WILL BE FILLED IN AND A TYPICAL 3 LANE SECTION WILL BE CONSTRUCTED TO ACCOMMODATE FUTURE WIDENING. THIS PROJECT ALSO INCLUDES THE RE-DECKING OF THE WAUSEON-OTTOKEE ROAD BRIDGE (COUNTY ROAD 14) OVER THE OHIO TURNPIKE AT M.P. 35.2.

THE FOLLOWING MAINTENANCE OF TRAFFIC PHASING HAS BEEN SUGGESTED TO ACCOMPLISH THE PHASED CONSTRUCTION ACTIVITIES

PRE-PHASE 1 (NOT SHOWN)

PRIOR TO COMMENCING PHASE 1 CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL PERFORM THE FOLLOWING:

- 1. PAVEMENT REPAIRS ON BOTH THE EASTBOUND AND WESTBOUND OHIO TURNPIKE WITHIN THE PROJECT LIMITS AND SIGNAGE LIMITS
- 2. INSTALLATION OF TEMPORARY PAVEMENT AND SHOULDER RECONSTRUCTION THROUGH THE LENGTH OF THE PROJECT, INCLUDING AT THE WESTBOUND ENTRANCE RAMP TO I-80 AND THE EASTBOUND EXIT RAMP TO STATE ROUTE 108 (EXIT 34)
- 3. INSTALLATION OF STORM SEWER CROSSINGS. PERFORM MAINTENANCE OF TRAFFIC IN ACCORDANCE WITH OTIC STANDARD DRAWING TCR-2.
- 4. BEGIN EMBANKMENT CONSTRUCTION BELOW THE M.P. 34.2 STRUCTURE.

THE CONTRACTOR SHALL UTILIZE OTIC STANDARD DRAWINGS TO PERFORM ALL PRE-PHASE 1 WORK. THE CONTRACTOR SHALL TAKE CARE TO ENSURE THAT OPPOSING WORK ZONES ARE NOT CREATED.

PHASE 1

THE CONTRACTOR SHALL CLOSE AND DETOUR COUNTY ROAD 14 AND BEGIN RE-DECKING OF THE M.P. 35.2 BRIDGE. THE CONTRACTOR SHALL UTILIZE ODOT SCD MT-101.60 WHEN CLOSING COUNTY ROAD 14 TO PERFORM RE-DECKING. BRIDGE RE-DECKING SHALL BE COMPLETED AT THIS TIME AND COUNTY ROAD 14 SHALL BE RE-OPENED UPON COMPLETION OF THE RE-DECKING. RE-DECKING OF THE M.P. 35.2 BRIDGE MAY BE STARTED WITH PRE-PHASE 1 CONSTRUCTION IF THE CONTRACTOR CHOOSES TO.

THE CONTRACTOR SHALL MAINTAIN TWO LANES OF EASTBOUND AND WESTBOUND TRAFFIC USING THE OUTSIDE LANE AND RECONSTRUCTED SHOULDER AS DETAILED IN THE PHASE 1 MAINTENANCE OF TRAFFIC PLANS.

AT THIS TIME, THE INSIDE PORTION OF THE M.P. 34.2 & 34.5 BRIDGES SHALL BE REMOVED, AND THE PROPOSED MEDIAN WALL, SHOULDER, AND INSIDE LANE CONSTRUCTED AS DETAILED ON THE PLANS THROUGH M.P. 35.4 IN BOTH EASTBOUND AND WESTBOUND DIRECTIONS. THE CONTRACTOR SHALL ALSO COMPLETE A PORTION OF THE MILL & FILL OF THE EXISTING INSIDE LANE BOTH EASTBOUND AND WESTBOUND.

AFTER COMPLETION OF PHASE 1 CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL PROCEED TO PRE-PHASE 2 CONSTRUCTION ACTIVITIES

PRE-PHASE 2 (NOT SHOWN)

PRIOR TO COMMENCING PHASE 2 CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL PERFORM THE FOLLOWING:

- 1. INSTALLATION OF TEMPORARY PAVEMENT AND SHOULDER RECONSTRUCTION THROUGH THE LENGTH OF THE PROJECT, INCLUDING AT THE EASTBOUND EXIT RAMP TO STATE ROUTE 108 (EXIT 34).
- 2. INSTALLATION OF TEMPORARY DRAINAGE AT M.P. 34.1. THIS SHALL INCLUDE THE INSTALLATION OF A TEMPORARY DRAINAGE STRUCTURE, TEMPORARY 12" CONDUIT, AND A TEMPORARY SLOTTED DRAIN. THE EXISTING DRAINAGE STRUCTURE SHALL BE COVERED WITH A STEEL PLATE PRIOR TO THE INSTALLATION OF TEMPORARY PAVEMENT.

PHASE 2

THE CONTRACTOR SHALL MAINTAIN TWO LANES OF EASTBOUND AND WESTBOUND TRAFFIC USING THE NEWLY CONSTRUCTED INSIDE PAVEMENT AND TEMPORARY PAVEMENT AS DETAILED IN THE PHASE 2 MAINTENANCE OF TRAFFIC PLANS.

AT THIS TIME, THE REMAINING PORTION OF THE M.P. 34.2 AND M.P. 34.5 BRIDGE SHALL BE REMOVED. THE EMBANKMENT CONSTRUCTION AT THE M.P. 34.2 STRUCTURE SHALL BE COMPLETED. THE CENTER LANE. OUTSIDE LANE, AND OUTSIDE SHOULDER SHALL BE CONSTRUCTED. THE CONTRACTOR SHALL ALSO COMPLETE THE MILL & FILL AS DESIGNATED ON THE PLANS.

AFTER COMPLETION OF PHASE 2 CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL PROCEED TO PHASE 3 CONSTRUCTION ACTIVITIES.

PHASE 3 (NOT SHOWN)

AT THIS TIME THE CONTRACTOR SHALL INSTALL PROPOSED GUARDRAIL PER OTIC STANDARD DRAWINGS. THE CONTRACTOR SHALL ALSO PLACE THE FINAL SIGNAGE, PAVEMENT MARKINGS, AND BOTH EASTBOUND AND WESTBOUND SNAPS PER OTIC STANDARD DRAWINGS.

INTERIM MAINTENANCE OF TRAFFIC PHASES AND OPERATIONS

THE DETAILED MAINTENANCE OF TRAFFIC PLANS THAT ARE PRESENTED IN THE PLANS FOR THIS PROJECT REFLECT MAJOR PHASES OF CONSTRUCTION THAT ARE REQUIRED TO COMPLETE THE CONSTRUCTION OF THIS PROJECT. THE MAINTENANCE OF TRAFFIC PLANS ALSO INCLUDES QUANTITY CALCULATIONS FOR THESE MAJOR PHASES AS DEPICTED IN THE PLANS.

THERE ARE PERIODS DURING THE CONSTRUCTION OF THIS PROJECT WHERE THE CONTRACTOR SHALL BE REQUIRED TO PERFORM WORK TO ESTABLISH THESE MAJOR CONSTRUCTION PHASES OR TO TRANSITION INTO THE NEXT PHASE OF CONSTRUCTION WHICH SHOULD BE CONSIDERED AS INTERIM MAINTENANCE OF TRAFFIC PHASES.

DURING INTERIM MAINTENANCE OF TRAFFIC PHASES, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL LABOR. MATERIALS. EQUIPMENT AND TEMPORARY TRAFFIC CONTROL DEVICES. INCLUDING IMPACT ATTENAUTORS, REQUIRED TO ESTABLISH THESE MAJOR PHASES OF CONSTRUCTION.

PAYMENT OF THE ABOVE NOTED WORK FOR INTERIM MAINTENANCE OF TRAFFIC PHASES AND OPERATIONS SHALL BE INCLUDED IN THE LUMP SUM BID FOR ITEM SP 614- MAINTAINING TRAFFIC, WHICH SHALL INCLUDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO COMPLETE THE WORK AS SPECIFIED ABOVE.

MAINTAINING TRAFFIC

THIS ITEM SHALL CONSIST OF MAINTENANCE OF TRAFFIC ON EXISTING ROADWAYS IN ACCORDANCE WITH THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES, CURRENT EDITION, LATEST REVISION. THE SPECIFICATIONS AND THE FOLLOWING:

- 1. ALL TRAFFIC CONTROL DEVICES, DRUMS, TRAFFIC CONTROL SIGNS, FLASHING ARROW PANELS, FLAGGERS, ETC., AS SHOWN AND LOCATED ON THE MAINTENANCE OF TRAFFIC PLANS AND/OR OTIC/ODOT STANDARD DRAWINGS, SHALL BE INCORPORATED FOR THE VARIOUS TYPES OF WORK AREAS UNDER NORMAL TRAFFIC CONDITIONS. IF SPECIAL TRAFFIC CONDITIONS EXIST. THE MAINTENANCE OF TRAFFIC PLANS MAY HAVE TO BE MODIFIED. HOWEVER, NO MODIFICATIONS TO THE MAINTENANCE OF TRAFFIC PLANS SHALL BE MADE UNLESS APPROVED BY THE CHIEF ENGINEER IN WRITING PRIOR TO FIELD IMPLEMENTATION.
- 2. FLAGGERS SHALL BE REQUIRED TO BE IN PLACE WHERE CONSTRUCTION TRAFFIC CROSSES ACTIVE RAMP LANES AT ANY TIME WHEN CONSTRUCTION IS TAKING PLACE
- 3. IN ACCORDANCE WITH OTIC STANDARD DRAWING TCB-1, TRUCKS ENTERING AND EXITING THE CONSTRUCTION ZONE AT ALL ACCESS POINTS MUST BE SIGNED IN ALL ASSOCIATED SIGNS MUST BE COVERED WHEN THE CONSTRUCTION ACCESS POINT IS NOT IN USE.
- 4. AT ALL ACTIVE HIGH SPEED CROSSOVERS, THE EXISTING CONFLICTING PAVEMENT MARKINGS AND RPM (RAISED PAVEMENT MARKINGS) SHALL BE REMOVED AND CONSTRUCTION ZONE MARKERS AND EDGE LINE SHALL BE INSTALLED TO THE LIMITS AS INDICATED ON THE MAINTENANCE OF TRAFFIC PLANS PRIOR TO OPENING THE ZONE TO TRAFFIC. REMOVAL OF THE EXISTING PAVEMENT MARKINGS SHALL BE IN ACCORDANCE WITH SP 614C.
- 5. CONSTRUCTION ZONE MARKERS AND PORTABLE BARRIERS SHALL BE PLACED IN ACCORDANCE WITH OTIC STANDARD DRAWINGS AND AS SHOWN ON THE MAINTENANCE OF TRAFFIC PLANS
- 6. TRUCK MOUNTED ATTENUATORS (TMA) ARE CRASH CUSHIONS THAT ARE ATTACHED TO THE REAR OF PROTECTIVE VEHICLES TO REDUCE THE SEVERITY OF REAR-END COLLISIONS. TMA'S ARE INTENDED TO BE USED ON SHADOW VEHICLES IN MOVING OPERATIONS (THAT PARTIALLY OR TOTALLY ENCROACH ON THE PAVED SHOULDER OR TRAVELED LANE), OPERATIONS IN WHICH THE SHADOW VEHICLE IS BEING OCCUPIED, AND WHEN THERE ARE FEW OR NO ADVANCED WARNING SIGNS OR TRAFFIC CONTROL DEVICES. TMA'S ARE TO BE ATTACHED TO MEDIUM TRUCKS AND ARE TO BE LOCATED IN ADVANCE (AT THE BACK) OF MOVING OPERATIONS.
- 7. THE CONTRACTOR'S RESPONSIBILITY TO THE SAFETY OF THE MOTORING PUBLIC WHILE PERFORMING THE REQUIREMENTS OF THE CONTRACT SHALL BE IN ACCORDANCE WITH THESE MAINTENANCE OF TRAFFIC PLANS, THE OHIO DEPARTMENT OF TRANSPORTATION, THE OHIO TURNPIKE COMMISSION THE SPECIFICATIONS AND SPECIAL PROVISIONS AND THE "OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES" (THE MANUAL).

OFFICERS AS REQUIRED.

- WORK IN PROGRESS.

FOLLOWING SHALL ALSO APPLY:

PERIOD.

SP 622.

SHALL BE WASHED PRIOR TO BEING INSTALLED.

COMPLETE THE WORK AS DETAILED IN THE PLANS.

STORAGE OF PORTABLE BARRIER

THE OHIO TURNPIKE AND INFRASTRUCTURE COMMISSION WILL ALLOW STORAGE OF PORTABLE BARRIER WALL ON TURNPIKE RIGHT OF WAY AT TOLL PLAZAS 25, 34 AND 39, SPACE IS AVAILABLE AT EACH TOLL PLAZA. THE CONTRACTOR SHALL VERIFY THE AMOUNT OF SPACE THAT IS AVAILABLE AT EACH TOLL PLAZA. THE AVAILABLE SPACE AT THE TOLL PLAZAS MAY REQUIRE MINIMAL GRADING TO PREPARE THE SURFACE FOR LEVEL AND STABLE STORAGE. EITHER ASPHALT MILLINGS OR CRUSHED AGGREGATE MAY BE USED AT THE CONTRACTOR'S OWN EXPENSE TO GRADE AND STABILIZE THE STORAGE AREA. PORTABLE BARRIER SHALL NOT BE STORED HIGHER THAN THREE PIECES HIGH, TYPICAL STORAGE ANTICIPATED WOULD BE IN CUBES OF 5 PORTABLE BARRIER SECTIONS ALTERNATELY STACKED 3 HIGH OR AS RECOMMENDED BY THE MANUFACTURER. RESTORATION OF THE AREA WILL BE REQUIRED TO ORIGINAL OR BETTER CONDITIONS AS APPROVED BY THE CHIEF ENGINEER PRIOR TO FINAL COMPLETION. ALL BROKEN BARRIER AND DEBRIS SHALL BE REMOVED FROM THESE AREAS ONCE COMPLETE AND DISPOSED IN ACCORDANCE WITH SP 105. FLAGGERS WILL BE REQUIRED FOR ANY TURNING MOVEMENTS IN FRONT OF THE TOLL PLAZAS PER THE OTIC'S STANDARDS. THE CONTRACTOR SHALL PROVIDE A UTILIZATION PLAN TO THE CHIEF ENGINEER FOR APPROVAL. THIS PLAN SHALL INCLUDE THE FOLLOWING: AN AERIAL DRAWING OF THE TOLL PLAZA WHICH DEFINES THE STORAGE AREA, SIZE OF AREA REQUIRED, DESCRIPTION OF HOW THE BARRIER IS TO BE STORED, DESCRIPTION OF WORK REQUIRED TO PREPARE THE STORAGE AREA WHICH INCLUDES TYPE OF SURFACE TO BE INSTALLED IF REQUIRED, GRADING THAT PROVIDES POSITIVE DRAINAGE AND ANY EROSION CONTROL MEASURES REQUIRED, AND THE LOGISTICS TO STORE AND RETRIEVE THE STORED PORTABLE BARRIER TO AND FROM THE TOLL PLAZA. ALL COSTS ASSOCIATED WITH THE STORAGE OF PORTABLE BARRIER SHALL BE CONSIDERED INCIDENTAL TO THE LUMP SUM PRICE BID OF ITEM SP 622 - PORTABLE BARRIER.

ITEM 614 PORTABLE CHANGEABLE MESSAGE SIGN, AS PER PLAN

THE CONTRACTOR SHALL FURNISH, INSTALL, MAINTAIN AND REMOVE, WHEN NO LONGER NEEDED, TWO (2) PORTABLE CHANGEABLE MESSAGE SIGNS (PCMS). THE INTENT OF THE PCMS IS TO ALERT MOTORISTS OF TRAFFIC QUEUES OR INCIDENTS DURING MAINTENANCE OF TRAFFIC PHASES 1 AND 2. PCMS SHOULD BE PUT IN PLACE APPROXIMATELY A WEEK BEFORE PHASES 1 AND 2 ARE ESTABLISHED AND REMOVED ONCE PHASES 1 AND 2 DISCONTINUED. THE TWO PCMS SIGNS SHALL BE LOCATED NEAR THE PROJECT SITE, ONE FOR EACH DIRECTION OF TRAVEL, AS DIRECTED BY THE ENGINEER. THE SIGNS SHALL BE OF A TYPE SHOWN ON A LIST OF APPROVED CLASS "A" PCMS UNITS MAINTAINED BY THE ODOT DIRECTOR (OFFICE OF MATERIALS MANAGEMENT). THE APPROVED LIST OF PORTABLE CHANGEABLE MESSAGE SIGNS CAN BE FOUND ON THE ODOT WEBSITE BY CLICKING ON THE SERVICES MENU, THEN CLICKING ON MATERIALS MANAGEMENT.

EACH SIGN SHALL BE TRAILER-MOUNTED AND EQUIPPED WITH A FUNCTIONAL DIMMING MECHANISM, TO DIM THE SIGN DURING DARKNESS, AND A TAMPER AND VANDAL PROOF ENCLOSURE. EACH SIGN SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE ON-SITE PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT. THE SIGN SHALL ALSO BE CAPABLE OF BEING POWERED BY AN ELECTRICAL SERVICE DROP FROM A LOCAL UTILITY COMPANY. PCMS SHALL BE DELINEATED ON A PERMANENT BASIS IN ACCORDANCE WITH ODOT CMS 614.03.

THE PCMS LOCATIONS, LIMITS FOR THOSE LOCATIONS AND ALL ACTIVATION OF PCMS BY THE CONTRACTOR SHALL BE AS DIRECTED BY THE CHIEF ENGINEER. THE PCMS SHALL BE LOCATED IN A HIGHLY VISIBLE POSITION YET PROTECTED FROM TRAFFIC. THE CONTRACTOR SHALL, AT THE DIRECTION OF THE CHIEF ENGINEER, RELOCATE THE PCMS TO IMPROVE VISIBILITY OR ACCOMMODATE CHANGED CONDITIONS. WHEN NOT IN USE THE PCMS SHALL BE TURNED OFF. ADDITIONALLY, WHEN NOT IN USE FOR EXTENDED PERIODS OF TIME, THE PCMS SHALL BE TURNED, FACING AWAY FROM ALL TRAFFIC, AND SHALL DISPLAY ONE OR MORE TYPE G YELLOW RETROREFLECTIVE SHEETING SURFACES OF 9-INCH BY 15-INCH MINIMUM SIZE FACING TRAFFIC.

THE CHIEF ENGINEER SHALL BE PROVIDED ACCESS TO EACH SIGN UNIT AND SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE TURNPIKE MAINTENANCE PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT, AND TO REVISE SIGN MESSAGES, IF NECESSARY.

ALL MESSAGES TO BE DISPLAYED ON THE SIGN WILL BE PROVIDED BY THE CHIEF ENGINEER. A LIST OF ALL REQUIRED PRE-PROGRAMMED MESSAGES WILL BE GIVEN TO THE CONTRACTOR AT THE PROJECT PRE-CONSTRUCTION CONFERENCE. THE SIGN SHALL HAVE THE CAPABILITY TO STORE UP TO 99 MESSAGES MESSAGE MEMORY OR PRE-PROGRAMMED DISPLAYS SHALL NOT BE LOST AS A RESULT OF POWER FAILURES TO THE ON-BOARD COMPUTER. THE SIGN LEGEND SHALL BE CAPABLE OF BEING CHANGED IN THE FIELD. THREE-LINE PRESENTATION FORMATS WITH UP TO SIX MESSAGE PHASES SHALL BE SUPPORTED. PCMS FORMAT SHALL PERMIT THE COMPLETE MESSAGE FOR EACH PHASE TO BE READ AT LEAST TWICE.

THE PCMS SHALL CONTAIN AN ACCURATE CLOCK AND PROGRAMMING LOGIC WHICH WILL ALLOW THE SIGN TO BE ACTIVATED, DEACTIVATED OR MESSAGES CHANGED AUTOMATICALLY AT DIFFERENT TIMES OF THE DAY FOR DIFFERENT DAYS OF THE WEEK

THE PCMS SHALL CONTAIN A CELLULAR TELEPHONE DATA LINK WHICH WILL ALLOW REMOTE ACCESS BY THE OTIC COMMUNICATIONS CENTER THROUGH A WEB BROWSER OR PROVIDED SOFTWARE. REMOTE ACCESS WILL ALLOW PCMS ACTIVATION, MESSAGE CHANGES, MESSAGE ADDITIONS, REVISIONS TO TIME OF DAY PROGRAMS, VERIFICATION OF CURRENT AND PROGRAMMED MESSAGES AND SHOW ITS CURRENT LOCATION ON A MAP. THE OTIC COMMUNICATIONS CENTER SHALL BE FURNISHED A USER NAME AND PASSWORD TO ACCESS THE PCMS THROUGH THE WEBSITE OR PROVIDED SOFTWARE.

ALL PCMS UNITS SHALL BE EQUIPPED WITH RADAR THAT ENABLES THE MESSAGE BOARD TO DISPLAY THE SPEED OF THE APPROACHING VEHICLES.

WHEN A PCMS IS INITIALLY BROUGHT OUT TO THE PROJECT THE CONTRACTOR SHALL CONTACT THE OTIC COMMUNICATIONS CENTER WITH THE PCMS NUMBER AND LOCATION. AT THAT TIME THE OTIC COMMUNICATIONS WILL VERIFY COMMUNICATION WITH THE PCMS.

WHEN A PCMS IS REPLACED OR RELOCATED THE CONTRACTOR SHALL CONTACT THE OTIC COMMUNICATIONS CENTER WITH THE PCMS NUMBER AND LOCATION.

THE PCMS UNIT SHALL BE MAINTAINED IN GOOD WORKING ORDER BY THE CONTRACTOR IN ACCORDANCE WITH THE PROVISIONS OF ODOT CMS 614.07. THE CONTRACTOR SHALL, PRIOR TO ACTIVATING THE UNIT, MAKE ARRANGEMENTS WITH AN AUTHORIZED SERVICE AGENT FOR THE PCMS, TO ASSURE PROMPT SERVICE IN THE EVENT OF FAILURE. ANY FAILURE SHALL NOT RESULT IN THE SIGN BEING OUT OF SERVICE FOR MORE THAN 12 HOURS, INCLUDING WEEKENDS. FAILURE TO COMPLY MAY RESULT IN AN ORDER TO STOP WORK AND OPEN ALL TRAFFIC LANES AND/OR IN THE CHIEF ENGINEER TAKING APPROPRIATE ACTION TO SAFELY CONTROL TRAFFIC. THE ENTIRE COST TO CONTROL TRAFFIC, ACCRUED BY THE OHIO TURNPIKE AND INFRASTRUCTURE COMMISSION DUE TO THE CONTRACTOR'S NONCOMPLIANCE, WILL BE DEDUCTED FROM MONEYS DUE, OR TO BECOME DUE THE CONTRACTOR ON THEIR CONTRACT.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR 24-HOUR-PER-DAY OPERATION AND MAINTENANCE OF THESE SIGNS ON THE PROJECT FOR THE DURATION OF THE PHASES WHEN THE PLAN REQUIRES THEIR USE

PAYMENT FOR THE ABOVE DESCRIBED ITEM SHALL BE AT THE CONTRACT UNIT PRICE. PAYMENT SHALL INCLUDE ALL LABOR, MATERIALS, EQUIPMENT, FUELS, LUBRICATING OILS, SOFTWARE, HARDWARE AND INCIDENTALS TO PERFORM THE ABOVE DESCRIBED WORK. THE CONTRACTOR SHALL ONLY BE PAID FOR PCMS UNITS WHEN THEY ARE IN OPERATION ON THE PROJECT AS SPECIFIED IN THE PLANS OR BY THE CHIEF ENGINEER.

THE FOLLOWING ESTIMATED QUANTITY HAS BEEN INCLUDED IN THE GENERAL SUMMARY FOR USE AS DIRECTED BY THE CHIEF ENGINEER TO PROVIDE TWO (2) PORTABLE CHANGEABLE MESSAGE SIGNS, EACH SIGN FOR APPROXIMATELY 240 DAYS, FOR AN ESTIMATED TOTAL OF 480 DAYS. _____

480 DAY

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGN, AS PER PLAN

ITEM 614 - WORK ZONE IMPACT ATTENUATOR FOR 24" WIDE HAZARDS (UNIDIRECTIONAL)

FURNISH AN IMPACT ATTENUATOR FROM THE OFFICE OF ROADWAY ENGINEERING'S APPROVED LIST FOR WORK ZONE IMPACT ATTENUATORS. FROM THE ROADWAY STANDARDS APPROVED PRODUCTS WEB PAGE.

MANUFACTURER'S SPECIFICATIONS.

IMPACT

TRANSITIONS

DOCUMENTATION TO THE ENGINEER FOR ACCEPTANCE.

INCLUDED IN THE COST OF THE GATING IMPACT ATTENUATOR.

ANY IMPACT ATTENUATOR PLACED ON:

- NEW PAVEMENT
- PAVEMENT THAT IS NOT BEING REPLACED AS PART OF THIS PROJECT OR PAVEMENT ON AN ACCELERATION/DECELERATION RAMP

SHALL BE AN ANCHORLESS WATER-FILLED IMPACT ATTENUATOR. FURNISH AN ANCHORLESS WATER-FILLED IMPACT ATTENUATOR FROM THE OFFICE OF ROADWAY ENGINEERING'S APPROVED LIST FOR WORK ZONE IMPACT ATTENUATORS, FROM THE ROADWAY STANDARD'S WEB PAGE FOR ROADWAY STANDARDS APPROVED PRODUCTS.

IMPACT ATTENUATORS SHOWN AND QUANTIFIED IN THE PLANS ARE FOR THE PROPOSED MAINTENANCE OF TRAFFIC PHASE LAYOUTS. ADDITIONAL IMPACT ATTENUATORS UTILIZED FOR PHASE SETUP, CONSTRUCTION ACCESS POINTS AND AI TERNATIVE MAINTENANCE OF TRAFFIC METHODS NOT DETAILED IN THESE PLANS SHALL BE INCLUDED IN THE LUMP SUM PRICE BID FOR ITEM SP 614 - MAINTAINING TRAFFIC AND SHALL INCLUDE THE COST OF THE ATTENUATOR. LABOR. MATERIALS AND EQUIPMENT NECESSARY TO SET, RESET AND REMOVE THE IMPACT ATTENUATOR. PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID AND SHALL INCLUDE ALL LABOR, TOOLS, EQUIPMENT AND MATERIALS NECESSARY TO CONSTRUCT, MAINTAIN AND REMOVE COMPLETE AND FUNCTIONAL IMPACT ATTENUATOR SYSTEM, INCLUDING ALL RELATED BACKUPS, TRANSITIONS, LEVELING PADS, HARDWARE AND GRADING, NOT SEPARATELY SPECIFIED. AS REQUIRED BY THE MANUFACTURER. ANCHOR REMOVAL CAN CAUSE DAMAGE TO THE PAVEMENT SURFACE. PAYMENT SHALL INCLUDE REPAIRING ANY DAMAGE CAUSED DURING REMOVAL.

ALL COSTS FOR THE PLACEMENT AND SUBSEQUENT REMOVAL OF THE TEMPORARY PAVEMENT, CROSSOVER GRADING, CROSSOVER DRAINAGE, SLOTTED DRAIN, ANY REQUIRED GUARDRAIL REMOVAL AND/OR RECONSTRUCTION FOR MOT PURPOSES, ALL LABOR AND MATERIALS SHALL BE INCLUDED IN THE PRICE BID FOR

ITEM 615 - PAVEMENT FOR MAINTAINING TRAFFIC, CLASS A, AS PER PLAN <u>1970</u> SQ. YD.

ITEM 614 - ASPHALT CONCRETE FOR MAINTAINING TRAFFIC

THIS ITEM SHALL CONSIST OF THE CONTRACTOR PROVIDING ITEM-614 ASPHALT CONCRETE FOR MAINTAINING TRAFFIC. THIS ITEM SHALL BE USED FOR WEDGING PURPOSES TO AID IN TRANSITIONING TRAFFIC FROM NORMAL TO MILLED SURFACE AND BACK AT THE PERTINENT TOLL/SERVICE PLAZAS FOR EACH PART OF THE CONTRACT. SMOOTH TRANSITIONS BETWEEN MILLED SURFACES AND PACED SURFACES SHALL BE MAINTAINED AT ALL TIMES AT TOLL/SERVICE PLAZA ENTRANCE/EXIT. AT NO TIME SHALL TRAFFIC BE SUBJECTED TO SUDDEN DIPS, DROP-OFFS, OR BUMPS. ASPHALT WEDGING OF TRANSITION AREAS SHALL BE IN ACCORDANCE WITH ODOT STANDARD DRAWING MT-101.90. MATERIAL SUPPLIED FOR THIS ITEM SHALL COMPLY WITH THE REQUIREMENTS OF 614.13.

PAYMENT FOR THIS ITEM SHALL INCLUDE ALL LABOR, EQUIPMENT, AND MATERIAL AND INCIDENTALS NECESSARY TO COMPLETE THIS ITEM INCLUDING PLACING AND REMOVING THE ASPHALT CONCRETE. THIS ITEM SHALL BE PAID FOR AT THE UNIT BID PRICE FOR ITEM 614 - ASPHALT CONCRETE FOR MAINTAINING TRAFFIC.

THE FOLLOWING ESTIMATED QUANTITY HAS BEEN INCLUDED IN THE GENERAL SUMMARY FOR USE AS DIRECTED BY THE CHIEF ENGINEER FOR THE MAINTENANCE OF TRAFFIC.

THIS ITEM SHALL BE AS PER SECTION 615 OF THE CMS. THIS ITEM SHALL INCLUDE ALL LABOR, MATERIALS AND ALL OTHER WORK NECESSARY TO RECONSTRUCT ROADWAY SHOULDERS FOR THE PURPOSES OF MAINTAINING TRAFFIC.

PER 254.05 PAVEMENT SURFACE TOLERANCES SHALL BE WITHIN 1/8 INCH PER TEN (10) FEET.

INCLUDED IN THE PRICE BID FOR

ITEM 615 - SHOULDER RECONSTRUCTION FOR MAINTAINING TRAFFIC. CLASS A

 \cap

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING A NON-GATING IMPACT ATTENUATOR.

INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS IN ACCORDANCE WITH THE

THE CONTRACTOR SHALL REPAIR OR REPLACE A DAMAGED UNIT WITHIN 24 HOURS OF A DAMAGING

WHEN BIDIRECTIONAL DESIGNS ARE SPECIFIED. THE CONTRACTOR SHALL SUPPLY APPROPRIATE

WHEN GATING IMPACT ATTENUATORS ARE DESIRED, THE CONTRACTOR SHALL SUBMIT

THE COST FOR THE ADDITIONAL BARRIER REQUIRED FOR A GATING IMPACT ATTENUATOR SHALL BE

ITEM 615 - PAVEMENT FOR MAINTAINING TRAFFIC, CLASS A, AS PER PLAN

THIS ITEM SHALL BE AS PER SECTION 615 OF THE CMS. IN ADDITION, PAYMENT FOR THIS ITEM SHALL INCLUDE ALL LABOR, MATERIALS AND ALL OTHER WORK NECESSARY TO THE RESURFACING OF THE EXISTING MEDIAN CROSSOVER AS SHOWN ON SHEETS 22 - 23

PER 254.05 PAVEMENT SURFACE TOLERANCES SHALL BE WITHIN 1/8 INCH PER TEN (10) FEET.

ITEM 614 - ASPHALT CONCRETE FOR MAINTAINING TRAFFIC

150 CU.YD.

ITEM 615 - SHOULDER RECONSTRUCTION FOR MAINTAINING TRAFFIC, CLASS A

ALL COSTS ASSOCIATED WITH SHOULDER RECONSTRUCTION FOR MAINTAINING TRAFFIC SHALL BE

<u>7451</u> SQ. YD.

(DESIGNED	CHECKED	.ON	REVISIONS	BY DAT	E DESIGN AGENCY	
1	PROJECI 43-19-02	MAINTENANCE OF TRAFFIC	DSM	LOB	1	ADDENDUM 1	LOB 2/05/1	6	
323		GENERAL NOTES	DRAWN	IN CHARGE	•	•	•		
)	DAIE: 11/30/18		DSM	TJW			•	220 South Main Street, Suite 2331, Alcon, Ohio 44311 Fax 330-57	0-572-2100
OHIO				F					OHO
TURNPIKE		KNPINE AND INFRAD			r D		Σ		IRNPIKE

						S	HEET NUMB	FR										
			12	13	14		17	18	19	20					ITEM	GRAND TOTAL	UNIT	
																		MAINT
									2	3					614	5	FACH	WORK ZONE IMPACT ATTENUATOR FOR 24" WID
			20						2						614	20	EACH	REPLACEMENT SIGN
			2	150											614	2	EACH	WORK ZONE CROSSOVER LIGHTING SYSTEM
				150					111	136	-	-	-		$614 \\ 614$	247	EACH	ASPHALT CONCRETE FOR MAINTAINING TRAFFI
									,,,,	6	f	μ	\cdots	h	614		EACH	OBJECT MARKER, TWO WAY
								0.50										
					1.32 3.99		2.59	0.50							614 614	2.64 7.98	MILE	WORK ZONE LANE LINE, CLASS I, 642 PAINT (4') WORK ZONE EDGE LINE, CLASS I, 642 PAINT (4'')
					1.33			1.33							614	2.66	MILE	WORK ZONE EDGE LINE, CLASS I, 642 PAINT (6")
					8,624		2,934	5,690							614	17,248	FT	WORK ZONE CHANNELIZING LINE, CLASS I, 642 F
					1,632		814	818							614	3,264	FT	WORK ZONE DOTTED LINE, CLASS I, 642 PAINT (
				480											614	480	DAY	PORTABLE CHANGEABLE MESSAGE SIGN, AS PE
			6.000												SD 614	6.000	HOUR	
			0,000												SP 014	0,000	HOUR	ZUNE PERSUN
							0.07	0.07							SP 614B	0.14	MILE	WORK ZONE LANE LINE, 4 INCH
							0.07	0.07							SP 614B	0.14	MILE	WORK ZONE WHITE EDGE LINE, 4 INCH
							0.07	0.07							SP 614B SP 614B	0.07	MILE	WORK ZONE YELLOW EDGE LINE, 4 INCH
			47												0.0.0140	47		
			17												SP 614C	17	MILE	REMOVAL OF PAVEMENT MARKING
				1,970											615	1,970	SQ YD	PAVEMENT FOR MAINTAINING TRAFFIC, CLASS A
				7,451											615	7,451	SQ YD	SHOULDER RECONSTRUCTION FOR MAINTAININ
			500												616	500	MGAL	WATER
																	-	
			20												SP 621	20	EACH	RAISED PAVEMENT MARKER - STIMSONITE MOD
			20												SP 621 SP 621	20	EACH	REPLACEMENT PRISMATIC RETRO-REFLECTOR
															SP 622 SP 622	LUMP LUMP		PORTABLE BARRIER (WITH GLARE SCREEN) PORTABLE BARRIER (WITHOUT GLARE SCREEN)
					350				100 12	78					SP 626 SP 626	450 90	EACH EACH	BARRIER REFLECTOR, TYPE A (WHITE) BARRIER REFLECTOR, TYPE B
							595	826							SP 626A	1,421	EACH	CONSTRUCTION ZONE MARKER, ONE-WAY MOD
							298	413							SP 626A	711	EACH	CONSTRUCTION ZONE MARKER, ONE-WAY MOD
			500												620	500	SOFT	
			500												630	500	SQFI	SIGNING MISC ADDITIONAL SIGNS WITH SUFFC
d+c			15,000												SPECIAL	15,000	FT	"SNAP" MILL AND FILL
-										-								
Ň																		
- Gwb																		
206																		
154																		
shii																		
Jaw J																		
SIAU																		
Inal																		
VSIF	<u> </u>									L								
19/16	1				-			-									-	
aau	<u> </u>									<u> </u>								
220																		
1/10																		
	-	-	-							-								

			ĺ	101	O ₩	
DESCRIPTION	REF. NO.			330-572-2 ax 330-572-2	OHIC	}
NANCE OF TRAFFIC		~		8 wen, Inc. 4311 F		I
HAZARDS (UNIDIRECTIONAL)		AGENC		UDD urms & DeHe on, Ohio 4		I
		ESIGN.		CCR Schomer, B 2531, Akr	Ζ	I
		D		GPD Glaus, Pyle, treet, Suite	Ō	I
				uth Main S		I
		Щ.	2	520 Sc		I
AINT (8")		Y DAT	,/G0/Z 81	• •	\mathbb{H}	I
")		8	3	· ·	Σ	I
R PLAN	13				Σ	I
		SNC			0	I
		REVISIO		• •	Ŭ	I
			•			I
						I
		Ŋ.	-			I
AS PER PLAN	13	а Ц	<u>_</u>	V		I
5 TRAFFIC, CLASS A		CHECK	<u> </u> ב		b	I
		G .		2 -	5	I
EL 101 LPCR		DESIGN		DSN	7	I
TING - STIMSONITE MODEL 101 LPCR						I
			ľ.		О	I
					۷	I
			5 C			I
EL, WHITE EL, YELLOW			A A		LL	I
TTS. AS DIRECTED BY THE CHIEF ENGINEER					Ζ	I
			ש פ			I
			ב			I
			A			I
			Ľ		4	I
		ļ	ų į		ш	I
			ZZ			I
			Ľ			I
			Z		F	I
			Ξ			I
					5	l
		10-01)		F	I
		43	2)/18		l
		님		11/3(l
		ЦЩ.	Ì	ш	I	l
		DRO		DAT	0	l
		Ĺ				
			1			l
		1	10	5	Pike	
		$\left \right\rangle$	12	3/	N N N N N	1

							614	614	614	SP626	SP626					
							Г.Ш	~	×	ų	ų					
							<u></u>	М	Į.	l ₹	₽ E					
							0 ² C		õ		<u>ь</u>					
O.	<						24 DA	N N	Ň	Ř	Ľ Ľ					
ĬŽ							N N N	0		E E	L L					
L L	IX	LOCATION		TION			52	EY I	L H	Ц Ц Ц	Ц Ц Ц					
Li li	Ū Ū	LUCATION	514	TION	SIDE		<u>5</u> K 2	ž	ž							
1	L C						22 <i>2</i>	IAI	IA!	RE	RE					
5							A A S	1 ×	~	R	Ř					
	L LL							<u>i</u>	C .		S I					
	2							37E	3JE	LA I	RF					
							LA H	Ö	6	B	B					
			FROM	ΤΟ	1		FACH	FACH	FACH	FACH	FACH					
	_		1110101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2/10/1	Entern	Enon	Enon	2/10/1					
			-													
		PHASE 2														
29	PCB-6	INTERSTATE ROUTE 80 EB	624+00	627+50	RT		1	8								
29	PCB-7	INTERSTATE ROUTE 80 WB	624+31	627+50	LT			7								
				1												
			-		-											
				-												
					· -											
30	PCB-8	INTERSTATE ROUTE 80 WB	627+50	633+73		-		13	6							
30	PCB-9	INTERSTATE ROUTE 80 EB	627+50	630+57	RŤ			$\left(\begin{array}{c} 1 \\ 1 \\ 7 \end{array} \right)$								
30	PCB-10	INTERSTATE ROUTE 80 WB	628+76	641+50	LT		100000	26								
30	PCB-11	INTERSTATE ROUTE 80 EB	630+05	641+50	RT		1	24								
30	-	INTERSTATE ROUTE 80 FB	6.3.3+74	641+50	RT	1	1	1	1	1	16	1	1	1	1	1
20		INTERSTATE POLITE ON IND	622+71	641+50	1 17		1				16		1			
- 30		INTERSTATE ROUTE OU WD	000774	041730				1	ł		10			ł		
							l						L			
31	PCB-12	INTERSTATE ROUTE 80 EB	641+50	650+50	RT		L	19					L			
31	PCB-13	INTERSTATE ROUTE 80 WB	641+50	653+45	LT		1	25								
31	PCB-14	INTERSTATE ROUTE 80 EB	652+23	655+02	RT			7	T					T		
.31	-	INTERSTATE ROUTE 80 FB	641+50	652+23	RT	1	1	1	1	1	23	1	1	I	1	1
21			641+50	652+22	17						20					
51		INTERSTATE ROOTE 80 WB	041+30	032+23	L'						23					
			-													
					-											
2																
Zbi																
<u></u>																
·																
19																
05																
<i>Ś</i>					1										l	
4																
<i>ee</i> [1	1	1	1	1		1	1		1	1	1	1	1
Ϋ́s	-	1			1									1		
<i>.b</i>		1	+	1	1	1		l	l				l	l		
цр			+	1	1								1			
	_	1			I			I	I	l			I	l		
	_	1			1			L								
N																
202																
315					1											
Ä					1							1		1		
SGL		1		1	1	1	1	1	1	1	1	1	1	1	1	
im		1	+	1	1		l	l	l				l	l		
- Ja					l		l						l			
	_				I			L					I			
8		1			I	I	I	ļ	ļ	ļ		I	L	ļ	ļ	
Itor																
IA(1											
su																
Pla	-		1	1	1	1	1	1	1	1		1	1	1	1	1
a		1	+	+	1	1		l	l	l		1	I	l	l	
<u><u> </u></u>	_				ł											
18/		1			I								l			
ieи						I						L				
ev.																
inli					I											
щ		1			1	1						1				
<u>]a</u>		1	1	1	1	1	1					1	1			
321		1	+	1	1	1	1		1	1		1	1	l	1	
17.		1	1		1			\mapsto	<u> </u>					<u> </u>		
20		TOTALS CARRIED	TO SHEET 16			1	3	<i>}</i> 136 ₹	6		78	1	1			1
7								\downarrow		ļ			L		ļ	
20							I –		I –	I					I	
ö							1									

OHIO	330-572-2100 330-572-2101					
NOI	CPD GROUP® Bus, PMe, Schomer, Burns & DeHaven, Inc. h Main Street, Suite 2531, Akron, Ohio 44311 Fax		DESIGN AGENCY			
NISS		LOB 2/05/19	BY DATE			
COM		ADDENDUM 1	REVISIONS			
-URE	3E	-	D NO.			
NCT	ZAWN IN CHARK	SM LOB	IGNED CHECKE			
STR	DY DY	× ≈	DES			
NFRA		UBSUMMAF				
		RAFFIC - S				
(E AI		ANCE OF T				
RNPIK		MAINTEN				
TUF	18	70-61-04	12 10 02			
ОНО	JATE: 11/30					
OHIO	3	12	ŀ			

7	8	9	10		42	43	44	SHEET 45	NUMBEF	R 63	69	73	74	77	ITEM	GRAND TOTAL	UNIT	L
															201	LUMP	LUMP SUM	CLEARING AND GRUBBING
2															201	2	EACH	TREE REMOVED. 18"
2															201	6	EACH	TREE REMOVED, 30"
						10									202	10	EACH	CATCH BASIN OR INLET REMOVED
									4						202	4	EACH	BRIDGE TERMINAL ASSEMBLY REMOVED
						703									202	703	FOOT	PIPE REMOVED
					3,734				100			 	 		202	3,834	FOOT	GUARDRAIL REMOVED
					1,202		4 400		120			 	 		202	1,322	FOOT	
							4,409			2 706					202	4,409	SQYD	PAVEMENT REMOVED, AS PER PLAN
										2,790			 		203	2,790		EXCAVATION
										14 447			 		203	14 447		FMBANKMENT
						Â	12.984)		,					204	A (12.984)	SQYD	SUBGRADE COMPACTION
							863	/							209	863	FOOT	LINEAR GRADING, AS PER PLAN
					1,875										606	1,875	FOOT	GUARDRAIL, TYPE MGS WITH LONG STEEL POSTS
					63								 		606	63	FOOT	GUARDRAIL, BARRIER DESIGN, TYPE MGS WITH LONG ST
									100				 		606	100	FOOT	GUARDRAIL, TYPE MGS
					225								 		606	225	FOOT	GUARDRAIL, REBUILT, TYPE MGS TO MEET EXISTING
					2								 		606	2	EACH	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1 WITH LONG S
									4						606	4	EACH	MGS BRIDGE TERMINAL ASSEMBLT, TTPE T
					1								 		606	1	EACH	MGS BRIDGE TERMINAL ASSEMBLY TYPE 1 BARRIER DE
—					2		+			-		 	 		600	2	EACH	MGS BRIDGE TERMINAL ASSEMBLY, TTPE 1, BARRIER DE
I					1		1	-				 	 		SP ANAD		FACH	IMPACT ATTENTUATOR TYPE 2 (OLIADGUARD II)
250					/										607	250	FOOT	FENCE TYPE 47 AS PER PLAN
250					1 614										622	1 614	FOOT	CONCRETE BARRIER SINGLE SLOPE TYPE C-50 AS PER
					1,014								 		022	1,014	1001	CONORETE BARRIER, SINGLE SECTE, THE COS, ASTER
					2										622	2	EACH	CONCRETE BARRIER, END ANCHORAGE, REINFORCED
				Â	1,785)								Â	(SP 536	1,785	SQYD	CONCRETE WEATHERPROOFING, MEDIAN WALL
			LS		hin	<i>.</i>									867	LOMP	LUMP SUM	TEMPORARY WIRED FACED MECHANICALLY STABILIZED
			LS												SPECIAL	LUMP	LUMP SUM	ROADWAY, MISC.: EXISTING STRUCTURE MONITORING
			7												SPECIAL	7	EACH	ROADWAY, MISC.: SETTLEMENT PLATFORM
			3												SPECIAL	3	EACH	ROADWAY, MISC.: VIBRATING WIRE PIEZOMETER
																		ERO
															SP 113	LUMP	LUMP SUM	SWP3 MANAGEMENT
						7									601	7	CU YD	ROCK CHANNEL PROTECTION, TYPE C WITHOUT FILTER
								140							653	140	CU YD	TOPSOIL FURNISHED AND PLACED
	1														659	1	EACH	SOIL ANALYSIS TEST
	321														659	321	CU YD	TOPSOIL
	2,886												 		659	2,886	SQ YD	SEEDING AND MULCHING
								1,250					 		659	1,250	SQ YD	SEEDING AND MULCHING, CLASS 3A
	145												 		659	145	SQ YD	REPAIR SEEDING AND MULCHING
	145										 		 		659	145	SQYD	INTER-SEEDING
	0.39												 		659	0.39	TON	COMMERCIAL FERTILIZER
	0.60												 		650	0.60	ACDE	1.1145
	0.00												 		650	0.00	ACRE	
	70												 		659	70	MSE	MOWING
í — — —	,							1 250							670	1 250	SO YD	
:	500							1,200					 		671	500	SQYD	FROSION CONTROL MAT TYPE B
	000												 		0, 1	000		
5							1	170							832	170	FOOT	PERIMETER GEOTEXTILE FABRIC FENCE
2								165							832	165	FOOT	GEOTEXTILE FABRIC DITCH CHECK
		1					1	50							832	50	FOOT	INLET PROTECTION
															832	LUMP	LUMP SUM	EROSION CONTROL
		200													SP 605	200	FOOT	AGGREGATE DRAIN, TYPE I, WITH FABRIC WRAP, AS PER
		200													SP 605	200	FOOT	AGGREGATE DRAIN, TYPE II, WITH FABRIC WRAP, AS PER
						3,106									SP 605	3,106	FOOT	6" SHALLOW PIPE UNDERDRAIN, WITH FABRIC WRAP (24"
						3,443									SP 605	3,443	FOOT	6" SHALLOW PIPE UNDERDRAIN, WITH FABRIC WRAP (30"
						3,915									SP 605	3,915	FOOT	6" BASE PIPE UNDERDRAIN, WITH FABRIC WRAP (18")
L						857		L				 	 		SP 605	857	FOOT	6" UNCLASSIFIED PIPE UNDERDRAIN, WITH FABRIC WRAF
L						262				-		 	 		SP 605	262	FOOT	6" UNDERDRAIN OUTLET PIPE
L						114				-		 	 		SP 611	114	FOOT	12" CONDUIT, TYPE F, 707.33
					-	253				-		 	 		SP 611	253	FOOT	15" CONDUIT, TYPE B, 706.02
					-	217	-						 		SP 611	217	FOOT	15" CONDULL, TYPE B, 706.02, AS PER PLAN
						55						 	 		SP 611	55	FOOT	15" CONDUIT, TYPE F, 707.33
					-	12				-		 	 		SP 611	12	FOOT	18" CONDUIT, TYPE B, 706.02
 						40						 	 		SP 611	40	FOOT	18" CONDUIT, TYPE F, 707.33, AS PER PLAN
L		-			-	24	-			-		 	 		SP 611	24	FOOT	24" CONDULL, TYPE F, 707.33, AS PER PLAN
I		5							4	-		 	 		SP 611	9	EACH	CATCH BASIN ADJUSTED TO GRADE, LESS THAN 4", AS PI
I		-								-	 	 	 		0.0.011		FACU	
I		2								-		 	 		SP 611	2	EACH	CATCH BASIN ADJUSTED TO GRADE, 4" TO 12", AS PER PL
į ———		1								-	 	 	 		SP 611	1	EACH	CATCH BASIN ADJUSTED TO GRADE, GREATER THAN 12",
4		8						1		1					SP 611	8	EACH	CATUM BASIN GRATE AND CASTING, AS PER PLAN

SCRIDTION	REF.	Т		2100	O
ROADWAY	NO.			330-572-	HUN
				Inc. 1 Fax	
		NCY		JP® DeHaven, hio 4431	
		N AGE		ROL Akron, O	_
		DESIG		C G G e, Schame e 2531, /	Ζ
				GPI Glaus, Pyl treet, Suit	0
	7			h Main St	Ĭ
	/			520 South	S
		DATE	-5-19		S
		BY D	CLH 2		Ζ
	8				
					Σ
EL POSTS		Ś	#		
		/ISION	MDDN	.	
TEEL POSTS		REV	ADDE		
					Ш
IGN WITH LONG STEEL POSTS					5
EEL POSTS		0			
	7	ľ	[
PLAN	8	CKED	S	HARGE	
		CHE	Σ	₩ <i>C</i> F	U
ARTH WALL		Q.		<u> </u>	Ď
	10	SIGNE	Ľ	RAWN	2
	10 10	DE	0		
ION CONTROL		Γ			
					S
				^{SOL}	
			≻	NTR	5
			Ř	col	
			Į	NO	
			۶ آ	osi	
			С Ц	ER	Ζ
			R		
			Ë	Υ	
			G	MC	Ш
				OAI	X
				R	Ξ
DANAACE					
PLAN	9				Ζ
PLAN	9				
			2 -		
			-19		
		9	4)/18	
			_	1/30	
	9		L L		T
			ŝ	VTE:	5
	.9		ŗ	D	
	9			_	
R PLAN	9			1	
AN	9		4	0	
AS PER PLAN	9 9	It	12	23)	HIC
	•	1	\sim	/	

GUAF	RDRAI	L/BARRIE	R SUBSU	IMMA	RY										(\sim	\sim	
						202			60	06			SP 606B	62	22	SP 5	36	SP 626
REF NO.	SHEET NO.	STATION T	O STATION	SIDE	TOTAL LENGTH	GUARDRAIL REMOVED	GUARDRAIL, TYPE MGS WITH LONG STEEL POSTS	GUARDRAIL, BARRIER DESIGN, TYPE MGS WITH LONG STEEL POSTS	GUARDRAIL, REBUILT, TYPE MGS TO MEET EXISTING	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1 WITH LONG STEEL POSTS	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1, BARRIER DESIGN WITH LONG STEEL POSTS	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2 WITH LONG STEEL POSTS	IMPACT ATTENTUATOR, TYPE 2 (QUADGUARD II)	CONCRETE BARRIER, SINGLE SLOPE, TYPE C-50, AS PER PLAN	CONCRETE BARRIER, END ANCHORAGE, REINFORCED	CONCRETE WEATHERPROOFING,		BARRIER REFLECTOR, TYPE A
		FROM	ТО		FT.	FT.	FT.	FT.	FT.	EACH	EACH	EACH	EACH	FT.	EA {	s.	. (EACH
0.1	10	628,00.00	622.72.00		670.00	007.0	100 5	CO 5	25.0		1						\rightarrow	
6-1	49	622+00.00	633+73.29	EBLI	0/3.23	027.2	402.0	02.3	25.0		/			1210.0		11	K	, /
<u>G-2</u>	49, 50	633+73.29	647+44.18	MED	1370.89								1	1310.9	- / {	1444	4 7	
G-3	50 40	622+05.00	626+05.00		300.30	270.2	250.0		50.0				/	303.4	<u> </u>	340	./ K	
6-4	49	633+00.00	637+25.00		400.00	219.2	375.0		50.0							$\vdash H$		6
6-5	49 50	645+05.66	647+68 16		425.00	290.3	227.5		25.0			1			\mapsto	\vdash	$ \rightarrow $	
G-7	50	645+13 11	647+50.10		202.00	204.2	187.5		25.0	1		,						4
G-8	50	648+93.81	650+55 71	WBRT	161.90	230.0 163.8	112.5		25.0	1					<u>}</u>	\vdash		4
G-9	50	648+75.66	650+50.63	FBRT	174 97	174.3	150.0		25.0	,		1			\mapsto	\vdash	+	
	00	040170.00	000.00	LDIN	114.01	114.0	100.0		20.0			,			<u>├</u>			,
R-1	49	633+47.57	634+38.48	WBLT	90.91	91.1									\vdash	\square	1 8	5
R-2	49	635+56.89	636+43.53	EBLT	86.64	86.8										\square	18	,
R-3	49	635+59.48	640+14.18	WBLT	454.70	454.8									<u>├</u>		TR	<u> </u>
R-4	50	643+02.08	647+53.45	EBLT	451.37	455.5									\mid			;
R-5	50	646+72.96	647+64.63	WBLT	91.67	91.8									5	1		
R-6	50	648+79.48	649+70.91	EBLT	91.43	91.6									1	1		<u>,</u>
R-7	50	648+86.39	653+02.56	WB LT	416.17	416.6									Γ ΄			
															5		K	
	TO	TALS CARRIED TO	GENERAL SUMMA	RY		3734	1875	63	225	2	1	2	1	1614	2 \$	178	5	33
								·		-					(~~~		$\overline{\wedge}$

	\sim	IDOI	1	
LUKB	SL	νΒδι	JIVIIVI	ARY

						202	609	9
REF NO.	SHEET NO.	STATION T	O STATION	SIDE	TOTAL LENGTH	CURB REMOVED	ASPHALT CONCRETE CURB, TYPE 1, PG64-22	CURB, TYPE 4-C
		FROM	то		FT.	FT.	FT.	FT.
C-1	64	633+20.00	636+70.00	WB RT	350.0	196	350.0	
C-2	64	633+25.00	637+00.00	EB RT	375.0	221	375.0	
C-3	64	633+55.15	633+73.29	WB LT	18.1			18.1
C-4	64	633+55.15	633+73.29	EBLT	18.1			18.1
C-5	65	645+25.00	647+53.00	WB RT	228.0	228	228.0	
C-6	65	645+25.00	647+34.85	EB RT	209.8	210	206.9	3.0
C-7	66	648+90.82	650+25.00	EB RT	134.2	133	134.2	
C-8	66	649+08.97	650+25.00	WB RT	116.0	116	113.0	3.0
R-8	64	634+01.24	634+15.08	EBLT	13.8	14		
R-9	64	634+05.64	634+22.08	WB LT	16.4	16		
R-10	64	635+68.23	635+74.62	EBLT	6.4	6		
R-11	64	635+76.25	635+88.22	WB LT	12.0	12		
R-12	65	647+34.75	647+40.85	EBLT	6.1	6		
R-13	65	647+37.02	647+47.82	WB LT	10.8	11		
R-14	66	648+96.52	649+10.36	EBLT	13.8	14		
R-15	66	649+03.70	649+22.66	WBLT	19.0	19		
						1202	1407	42
	TOTALS CA	KRIED TO GEN	ERAL SUMMAR	r		1202	1407	42

(DESIGNED	CHECKED	ON	REVISIONS	BY DATE	E DESIGN AGENCY	
4	PROJECI 43-13-02	ROADWAY SUB-SUMMARIES	PJF	CLH	-	ADDENDUM #1	CLH 2-6-1		
23		REMOVAL. GUARDRAIL. EARTHWORK AND CURB	DRAWN	IN CHARGE	•		•	CPD GROUP	
)	UAIE: 11/30/18		PJF	MRG			•	520 South Main Street, Suite 2531, Akron, Ohio 44311	. 330-572-210 Fax 330-572-21
OHO				ŀ					OHO
TURNPIKE		NPIKE AND INFRASI	いって	5	Ц Ү	NMOD	フロ		TURNPIKE
}									}

								202	204	209	252	254	SP	302		SP	304		SF	402	SP 403		SP	404		SP 404A	407	SP 627	SPECIAL		2100	
	STATION TO STATION	SIDE	LENGTH	PAVEMENT WIDTH	SHOULDER WIDTH SURFACE AREA	APPROACH SLAB AREA	PLANIMETERED AREA	PAVEMENT REMOVED, AS PER PLAN	SUBGRADE COMPACTION	LINEAR GRADING, AS PER PLAN	FULL DEPTH PAVEMENT SAWING	PAVEMENT PLANING, ASPHALT CONCRETE (VARIABLE DEPTH)	8" ASPHAL T CONCRETE BASE, PG 64-22 (SHOULDERS)	11-1/2" ASPHALT CONCRETE BASE, PG 64-22 (PAVEMENT)	9-1/2" AGGREGATE BASE (SHOULDER)	AGGREGATE BASE (VARIABLE TH.) (WITHOUT GUARDRAIL)	6" AGGREGATE BASE	9" AGGREGATE BASE	1-3,4" ASPHALT CONCRETE INTERMEDIATE COURSE OR RECYCLED ASPHALT CONCRETE INTERMEDIATE COURSE, PG64-22	1-3,4" ASPHALT CONCRETE INTERMEDIATE COURSE OR RECYCLED ASPHALT CONCRETE INTERMEDIATE COURSE, PG76-22 (FR)	ASPHALT CONCRETE LEVELING COURSE, USING CRUSHED STONE. PG76-22 (FR) (VARIABLE DEPTH)	1-1/2" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED STONE, PG64-22	2" ASPHALT CONCRETE SURFACE COURSE USING CRUSHED STONE, PG64-22	1-1/4" ASPHALT CONCRETE SURFACE COURSE, USING CRUSHED SLAG, PG76-22 (FR)	1-1/2" ASPHAL T CONCRETE SURFACE COURSE. USING CRUSHED SLAG, PG76-22 (FR)	JOINT SEALER	NON-TRACKING TACK COAT	STONE SHOULDER PROTECTION (MITH GUARDRAIL)	SONIC NAP ALERT PATTERN (SNAP)	DESIGN AGENCY	CPD GROUP Gaus, PMs, Schmer, Junes, Quelinen, Inc. 330-572	
			FT.	FT.	FT. SQ. F	T. SQ. FT.	. SQ. FT	: SQ. YD.	SQ. YD.	FT.	FT.	SQ. YD.	CU. YD.	CU. YD.	CU. YD.	. CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	CU. YD.	FT.	GAL.	CU. YD.	MILE			
	634+00.00 635+75.00	D LANES	AND SHOU	38.00	FULL DEPTH			160	739					236			123			36					31		144			DATE	2-5-19	<u>_</u>
	635+75.00 647+43.92 647+39.88 647+43.92 647+43.92 647+43.92 647+43.92 647+59.08 648+84.74 648+99.90	EB EB EB EB	1168.92 4.04 15.16 15.16	13.00 25.00	15196 101 947 947	6 947 947		992 11 105 105	163 1688 11 61 61	}	1161			539 4			281	26 26		82 1					70 0.5	2322	329 2			RV	сгн	
	648+99.90649+03.94648+99.90652+50.00	EB EB	4.04 350.10	25.00 13.00	101 4551	1		11 367	11 506	}	350			4 162			2 84			1 25					0.5 21	700	2 99			c,	, 1	
	632+74.63 633+55.15 633+55.15 633+73.29	EBLT EBLT	80.52 18.14		18.05 1453 26.10 473	3		55 10	<u>161</u> 53	81	81 18		36 12		51 14	6			8 3			7				161 36	22 7		0.02	NUISINE	DENDUM	
	633+73.29 634+00.00 634+00.00 647+43.92 648+99.90 652+23.00	EBLT EBLT FBLT	26.71 1343.92 323.10		26.71 713 13.71 18423 13.71 4429	3		14 54	79 2047 492	}	27		18 498 120		22 591 142				4 109 26			3 85 21				53	11 291 70		0.01		A	
	652+23.00 652+50.00	EBLT	27.00		13.00 351	, 		40	39	}			9		10				2			2					5		0.01			
	634+00.00 635+75.00 647+30.80 647+31.86 647+31.86 647+34.85	EBRT EBRT EBRT	175.00 1.06 2.99		9.83 1/20 9.83 10 9.00 27			56 1 3	$\begin{pmatrix} 191 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1/5 \\ 1 \\ 3 \end{pmatrix}$			44 0.3 0.7		56 0.3 0.9				9 0.1 0.1			8 0.1 0.1					26 0.2 0.4	<u> </u>	0.03	Ş	: - · · ·	
	648+90.82 648+93.81 648+93.81 648+94.86	EBRT EBRT	2.99 1.05		9.00279.8310			3 1	3	3			0.7 0.3		0.9 0.3				0.1 0.1			0.1 0.1					0.4 0.2	0.1 0.1	0.00	HECKED	CLH CHARGE	
	634+15.00 635+90.00 635+90.00 647+43.92	WB WB	175.00 1153.92	38.00 13.00	6650 1500) 1		160 1057	739	}	1154			236 532			123 278			36 81					31 69	2308	144 325			0	≧	
	647+39.88 647+43.92 647+43.92 647+59.08 648+84 74 648+99.90	WB WB WB	4.04 15.16 15.16	25.00	101 947 947	947		11 105 105	11 61 61	₹				4			2	26 26		1					0.5		2			DESIGNE	PJF DRAWN	
	648+99.90 649+03.94 648+99.90 652+50.00	WB WB	4.04 350.10	25.00 13.00	101 4551	1		11 347	11 506	{	342			4 162			2 84	20		1 25					0.5 21	684	2 99			F		F
	629+38.48 633+55.15 633+55.15 633+73.29	WBLT WBLT	416.67 18.14		18.33 7639 26.67 484)		413 15	849 54	417	417 18		191 12		270 15	33			41			35 2				833 36	115 7		0.08			U,
1000000 1000 100	633+73.29 634+15.00 634+15.00 647+43.92	WBLT WBLT	41.71 1328.92		26.71 1114 13.71 18217	7		27	124 2024	{	42		29 492		34 584				6 108			5 84				83	17 288 70		0.01			
Conversion Conversion <td>652+23.00 652+23.00 652+23.00</td> <td>WBLT</td> <td>27.00</td> <td></td> <td>13.00 351</td> <td></td> <td></td> <td>43</td> <td>39</td> <td>{</td> <td></td> <td></td> <td>9</td> <td></td> <td>142</td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>0.08</td> <td></td> <td>SN</td> <td>1</td>	652+23.00 652+23.00 652+23.00	WBLT	27.00		13.00 351			43	39	{			9		142				20			21					5		0.08		SN	1
1991139 1991139 129 1	634+15.00 635+90.00 647+48.96 647+50.01 647+50.01 647+53.00	WBRT WBRT WBRT	175.00 1.05 2.99		9.83 1720 9.83 10 9.00 27			54 1 3	191 1 3	175 1 3			44 0.3 0.7		56 0.3 0.9				9 0.1 0.1			8 0.1 0.1					26 0.2 0.4	3.5 0.1 0.1	0.03 0.00 0.00		ΑΤΙΟ	Z
Image: Control of the second	649+08.97 649+11.96 649+11.96 649+13.02	WBRT WBRT	2.99 1.06		9.00 27 9.83 10			3	3	3			0.7 0.3		0.9 0.3				0.1 0.1			0.1 0.1					0.4 0.2	0.1	0.00		CUL	
Short Origin Short		RESURFA	CING AREA	S - MAIN	LINE																										CAL	Z
Start200 Start200 <th< td=""><td>633+25.00 634+00.00 633+25.00 634+00.00</td><td>EB EBRT</td><td>75.00 75.00</td><td>24.00</td><td>1800 10.83 812</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td>200 90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td>5</td><td>7</td><td></td><td></td><td>27 7</td><td></td><td>0.01</td><td></td><td>IENT</td><td></td></th<>	633+25.00 634+00.00 633+25.00 634+00.00	EB EBRT	75.00 75.00	24.00	1800 10.83 812)						200 90									4		5	7			27 7		0.01		IENT	
101/1010 101/10100 101/10100 101/10100	635+75.00 637+00.00	EB	125.00	24.00	3000)						333									7		0	12			45		0.02		VEN	L
4647-800 647-800 10.8 2229 4 448 5 5 14 99 0.04 6447-800 EB 7.4 16 24.0 198 0.04 198 0.04 6447-800 EB 7.4 16 24.0 198 0.04 198 0.04 6447-800 EB 7.4 16 24.0 44 7 7 0.01 6447-800 EB 7.0 10 1083 55 19 0.04 6497-800 699-26.00 EB 10.0 489 10.8 5 19 0.01 6497-800 699-26.00 EB 10.0 188 11.0 188 11.0 188 10.0 189 0.01 6597-800 634-15.00 108 10.00 11.4 10 10.0 10.0 0.02 639-20.00 634-15.00 108 10.00 11.4 10 10 10.0 0.02 639-20.00 634-15.00 108 10.00 11.4 10 10 10.0 0.02 639-20.00	645+25.00 647+35.78	EBRT	210.78	24.00	5059)						562									12		8	20			76		0.02		ΡA	
6489+M8 6489-X00 EBRT 70 / 1083 857 001 649+M8 6489-X00 650+Z500 EB 5100 24.80 1285 0 141 0 0 3 5 19 0.01 649+X00 650+Z500 EB 5100 24.80 1285 0 141 0 0 3 5 19 0.01 649+X00 650+Z500 EB 5100 24.80 1083 522 0 61 0	645+25.00 647+30.80 648+99 84 649+74 00	EBRT FB	205.80	24.00	10.83 2229))						248 198									4		14	7			19 		0.04			
049474.00 6607200 2587 51.00 24.80 250 100 24.80 100 100 0.07 64974.00 660720.00 2587 51.00 108 52 0	648+94.86 649+74.00	EBRT	79.14	24.00	10.83 857	_						95											5				7		0.01			
633*2000 634+15.00 WB 95.00 24.00 2280 10.83 10.29 10.83 10.29 0.02 633*20.00 634+15.00 WB 95.00 10.83 10.29 0.02 11.4 0.02 11.4 0.02 10.83 10.29 0.02 635*20.00 636+7.00 WB 80.00 10.83 866 0 11.4 0	649+74.00 650+25.00 649+74.00 650+25.00	EBRT	51.00	24.80	1265 10.83 552	,						141 61									3		3	5			5		0.01	-	~	┤≝
S35+90.00 636+70.00 WB 80.00 24.00 1920 0 0.02 635+90.00 636+70.00 WBRT 80.00 24.00 10.83 866 0 96 0 0 0 7 0.02 0 0.02 645+25.00 647+43.98 WB 219.98 24.00 5266 0 594 0 12 20 79 0 0.02 645+25.00 647+43.98 WBR 7 10.83 286 0 594 0 0.04 0 0.04 <t< td=""><td>633+20.00 634+15.00 633+20.00 634+15.00</td><td>WB WBRT</td><td>95.00 95.00</td><td>24.00</td><td>2280 10.83 1029</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td>253 114</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>6</td><td>9</td><td></td><td></td><td>34 9</td><td></td><td>0.02</td><td></td><td>19-0;</td><td>F</td></t<>	633+20.00 634+15.00 633+20.00 634+15.00	WB WBRT	95.00 95.00	24.00	2280 10.83 1029)						253 114									5		6	9			34 9		0.02		19-0;	F
645+25.00 647+43.98 WB 218.98 24.00 5256 0 0 584 0	635+90.00636+70.00635+90.00636+70.00	WB WBRT	80.00 80.00	24.00	1920 10.83 866)						213 96									4		5	7			29 7		0.02		43- 30/18	
649+08.04 650+25.00 WB 116.96 24.00 2807 0.02 649+08.04 650+25.00 WB 111.98 10.83 1213 0 135 0 0 0.02 TOTALS CARRIED TO GENERAL SUMMARY 4409 12984 863 3609 4056 1636 1881 2003 39 982 106 357 286 58 286 70 97 245 7218 2582 8 1.02 444 123 1127	645+25.00 647+43.98 645+25.00 647+48.96	WB WBRT	218.98 223.96	24.00	5256 10.83 2425	<u>3</u>						584 269									12		15	20			79 20		0.04		ECT 11/2	
Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana TOTALS CARRIED TO GENERAL SUMMARY 4409 12984) 863 3609 4056 1636 1881 2003 39 982 106 357 286 58 286 70 97 245 7218 2582 8 1.02 Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana Indiana </td <td>649+08.04 650+25.00 649+13.02 650+25.00</td> <td>WB WBRT</td> <td>116.96 111 98</td> <td>24.00</td> <td>2807 10.83 1213</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>312 135</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td>7</td> <td>11</td> <td></td> <td></td> <td>42</td> <td></td> <td>0.02</td> <td></td> <td>ROJ</td> <td></td>	649+08.04 650+25.00 649+13.02 650+25.00	WB WBRT	116.96 111 98	24.00	2807 10.83 1213	7						312 135									6		7	11			42		0.02		ROJ	
	TOTA	LS CARR	RIED TO GEN	VERAL S	UMMARY			4409	(12984)	863	3609	4056	1636	1881	2003	39	982	106	357	286	58	286	70	97	245	7218	2582	8	1.02	Ļ	<u> </u>	┤╹
									$\widetilde{\mathbb{A}}$				38	517	J	L	1127		J			<u> </u>	56	3.	42	J				┝		-
																														(<u>′44 ∖</u> ∖123 /	NHIO IRNPIKE

Ο

ITEM	DESCRIPTION	QUANTITY	UNIT
202	BRIDGE TERMINAL ASSEMBLY REMOVED **/1	4	EACH
202	CURB REMOVED	120	FT
202	GUARDRAIL REMOVED **	100	FT
254	PAVEMENT PLANING; ASPHALT CONCRETE	233	SQ YD
304	AGGREGATE BASE	7	СU ҮД
407	TACK COAT	23	GAL
441	ASPHALT CONCRETE, SURFACE COURSE, (448), TYPE 1	9	CU YD
441	ASPHALT CONCRETE, INTERMEDIATE COURSE, (448), TYPE 2	12	CU YD
606	GUARDRAIL, TYPE-MGS	100	FT
606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	4	EACH
609	CURB, TYPE 6	120	FT
611	CATCH BASIN ADJUSTED TO GRADE	4	EACH
642	EDGE LINE, 4", TYPE 1	0.1	MILE
642	CENTERLINE, TYPE 1	0.05	MILE

PROUDFOOT ₹ 2 SION S **IMMO** ≧ C Ш Ľ MH ₹ C BPS L R S БR Ζ Z PLAN & PROFILE COUNTY ROUTE 14 4 PIKE R N 43-19-02 11-30-18 OHO PROJECT DATE:

NOTES:

ADJUST GUARDRAIL POST SPACING TO CLEAR PIPE OUTLET

EXISTING STEEL BRIDGE TERMINAL ASSEMBLY AND OTHER EXISTING STEEL GUARDRAIL ELEMENTS ALONG COUNTY ROUTE 14 BEING REMOVED AND REPLACED BY NEW MATERIALS SHALL BE CAREFULLY REMOVED, SALVAGED AND DELIVERED BY THE CONTRACTOR TO THE FULTON COUNTY ENGINEER'S FACILITY LOCATED AT 9120 COUNTY ROUTE 14 NORTH OF THE PROJECT SITE. ALL COSTS SHALL BE INCIDENTAL TO ITEM 202.

- DENOTES APPROACH PAVEMENT WORK. SEE ROADWAY TYPICAL SECTION, THIS SHEET.

(1) ITEM 254 - 1 $\frac{1}{4}$ " PAVEMENT PLANING, ASPHALT CONCRETE

(2) ITEM 407 - TACK COAT AT 0.10 GAL/SQ YD

(3) ITEM 441 - ASPHALT CONCRETE, INTERMEDIATE COURSE, (448), TYPE 2 MEDIUM DUTY

(4) ITEM 441 - 1 1/4" ASPHALT CONCRETE, SURFACE COURSE (448), TYPE 1 MEDIUM DUTY

5) ITEM 642 - CENTERLINE (SOLID DOUBLE), TYPE 1

6 ITEM 642 - EDGE LINE (WHITE) 4 INCH, TYPE 1

(7) ITEM 304 - 10" AGGREGATE BASE

(8) ITEM 202 - CURB REMOVED

9 ITEM 609 - CURB, TYPE 6

|--|

51